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EXECUTIVE SUMMARY

Nuclear-coupled flow/power oscillations are one of the major operational prob-

lems in current operating Boiling Water Reactors (BWRs). After the instability

events in LaSalle-II in U.S. and some other European BWRs such as Coarsa plant,

a series of experimental and analytical research efforts have been initiated to investi-

gate the nuclear-coupled Density Wave Oscillations (DWOs). However, the stability

is still a major issue in BWRs especially in next generation designs such as natural

circulation BWRs and high conversion BWRs. The problem in natural circulation

BWRs such as Simplified Boiling Water Reactor (SBWR) is more pronounced at low

pressure, low flow conditions during the startup. In view of the lack of sufficient

experimental data aforementioned operating conditions, there is still further research

need for low pressure, low flow instabilities. The problem of instability is further com-

plicated due to existence of void-reactivity and Doppler reactivity feedbacks which

creates the link between flow and neutron fields. Since there is no reactor data for

the nuclear-coupled flow/power oscillations at low pressure, the void-reactivity sim-

ulation in a well-scaled experimental facility is indispensable. The present research

in this project aims to investigate the nuclear-coupled instabilities in BWRs both

experimentally and analytically.

As the second-year tasks of the project, the followings have been accomplished:

1. A detailed literature review has been performed to understand the recent ac-

tivities and examine the available database. The problem is addressed for both

conventional BWRs and next generation BWRs such as natural circulation

BWRs. It has been concluded that the available database is insufficient to

address the problem of nuclear-coupled flow instabilities. Moreover, the void-

reactivity simulation experiments are rather new in the experimental two-phase
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flow field. The solid strategy for simulating the void-reactivity feedback is still

under development.

2. The analytical modeling for the flow instabilities in BWRs has been performed

based on physical processes governing the system. In view of the physical leading

mechanisms of the instabilities, the modeling strategy has been concentrated

into the following three processes:

(a) Flow Field

(b) Fuel Heat Conduction

(c) Neutron Kinetics

One-dimensional drift-flux formulation has been used to model the flow field.

In order to keep the problem formulation general, three regions in a two-phase

flow system are considered:

(a) Single Phase Heated Region

(b) Two-phase Mixture Heated Region

(c) Two-phase Mixture Unheated Region

By means of one-dimensional drift-flux formulation and subcooled boiling, me-

chanical and thermal non-equilibrium between liquid and gas phases are con-

sidered. The dimensional analysis for the flow field formulation provides the

dimensionless groups that should be conserved in an experimental facility to

simulate and investigate the instabilities.

A detailed analysis has been performed to investigate the fuel heat conduction

process. The heat conduction creates the link between heat generation inside

the fuel and heat transferred to the coolant. The amount of time-lag inherent to

the heat conduction is one of the important parameters in the nuclear-coupled

instabilities. The analysis on a typical BWR fuel pin and an electrical heater

used in an experimental facility resulted in strategy to simulate the wall heat
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flux response. The detailed dimensional analysis provides the important di-

mensionless groups for the fuel heat conduction considering the effect of flux

depression factor, temperature-dependent thermal conductivity of the fuel.

For the neutron kinetics, the point kinetic model has been used to determine the

time rate of change in the volumetric heat generation inside the fuel. The power

level which is a strong function of the void fraction in the flow channel can be

determined by solving the neutron kinetics model. Void-reactivity coefficient is

another important parameter for the nuclear-coupled instabilities. For a typical

BWR fuel bundle, the void-reactivity coefficient as a function of the void fraction

and the operating pressure has been generated by means of a two-dimensional

neutron transport code.

3. A simple nonlinear dynamics model has been derived for a generic polynomial

approximation for simulating the single phase enthalpy and two-phase mixture

density waves based on Galarkin Weighted Residual Method. It has been shown

that limit-cycle oscillations are observed inside the unstable region which is

predicted by linear frequency domain tools.

4. The experimental facility based on the scaling determined from flow-field for-

mulation has been designed and built as a part of first-year tasks. The heater

power-control program has been developed to adjust the heater power based

on the instantaneous area-averaged void-fraction measurements at three axial

locations along the test section simulating a typical BWR channel. The pro-

gram incorporates the void-reactivity feedback calculated from the measured

void-fractions and artificial time delay determined from the fuel heat conduc-

tion process scaling to simulate wall heat flux response in a typical BWR fuel

pin.



1. INTRODUCTION

It has been known that two-phase flow systems are vulnerable to different types

of instabilities. Existence of two different density materials (liquid-steam) alters the

transport and other fluid-flow related properties such as disturbance propagation,

pressure drop. In addition, nucleation phenomenon and different flow regimes with

different characteristics yield complex dynamic and static behavior.

Flow instabilities are undesirable in any engineering equipment since unstable

flow behavior may yield forced mechanical vibrations, system control problems, and

premature burnout of the heating element. In boiling water reactor (BWR) systems,

the issue is more important and causes severe operational problems when flow oscil-

lations are coupled to power oscillations due to several neutronic feedbacks such as

the void reactivity and the fuel temperature-reactivity (Doppler) feedback.

The instabilities at low pressure and low flow conditions are important for the

next generation BWRs using natural circulation for both normal and accidental core

cooling. Especially, the startup transient in these reactors is vulnerable to different

types of flow instabilities. In addition to the complexity of the problem at aforemen-

tioned conditions, the existence of nuclear coupling via reactivity feedbacks such as

the void-reactivity and Doppler reactivity further complicates the problem. At low

pressure conditions, different forms of power/flow oscillations can be observed. The

detailed review on available database has been shown that there is still a need to in-

vestigate the nuclear-coupled instabilities in both conventioanal and next generation

BWRs. Especially, the lack of the reactor data regarding the low pressure, flow flow

nuclear-coupled instabilities necessiates the void-reactivity feedback simulation in a

well-scaled experimental facility to investigate the problem and generate a reliable

database for benchmarking the available analytical models.
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In this study, the fundementals of the nuclear-coupled flow instabilities are

discussed along with the scaling of the experimental facility that has been built to

simulate the instabilities. The report is divided into two main parts. In the first part,

the analytical modeling strategy is discussed by emphasizing the important physical

processes. Three important physical processes are taken into account:

1. Flow Field

2. Fuel Heat Conduction

3. Neutron Kinetics

Chapter 3 discusses the general formulation of the flow field based on one-

dimensional drift-flux model. The flow field is analyzed by considering the following

three separate regions:

1. Single Phase Heated Section

2. Two-phase Heated Section

3. Two-phase Unheated Section

The scaling analysis is performed to derive the dimensionless groups that scale the

fluid flow in a general two-phase flow system composing of aforementioned sections.

In the formulation, the subcooled boiling as a thermal non-equilibrium is considered

by means of Saha-Zuber [1] departure enthalpy model.

Heat conduction in a typical BWR fuel pin plays an important role in the

instabilities. The conduction inside the fuel rod bridges the heat generation and heat

transferred to coolant. The process generally is accompanied with a certain time-lag,

the amount of the delay and the associated physics need to be understood to simulate

the void-reactivity in the experimenal facility. The detailed analysis of the fuel heat

conduction is discussed in Chapter 4. The dimensional analysis is carried out to

determine the governing dimensionless groups for the void-reactivity simulation.
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In Chapter 5, the neutron kinetics modeling is discussed. The point kinetic

model for describing the time rate of change in neutron flux is introduced. The

methodology used to generate the void-reactivity coefficient which is required for the

void-reactivity feedback simulation is given.

The flow field formulation including the subcooled boiling and one-dimensional

drift flux model is applied to investigate the flow excursion phenomenon which is

one of the important static instabilities. The importance of subcooled boiling is

emphasized to determine the stability boundary for the flow excursion in both forced

and natural circulation systems.

Chapter 7 describes a simple analytical model which is derived to investigate

the nonlinear aspects of the nuclear-coupled density wave oscillations (DWOs). The

field equations describing the flow field, fuel heat conduction, and neutron kinetics

are written as a system of nonlinear ordinary differential equations which can be

integrated in time to determine the transient response of the system.

In the second part of the report, the experimetal study related to the simu-

lation of the void-reactivity feedback is discussed. The detailed discription of the

experimental facility is introduced along with the instrumentation in Chapter 8. The

experimental data regarding the flow excursion and DWO without nuclear-coupling

is presented in Chapter 9. In this chapter, the detailed strategy for simulating the

void-reactivity feedback and wall heat flux response is discussed based on the scaling

study performed in the first part of the report.

In the following chapter, the state-of-the-art review on BWR instabilities is

presented.
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2. STATE-OF-THE-ART REVIEW

Flow instabilities are most common operating problem in two-phase flow sys-

tems such as conventional boilers, steam generator and nuclear reactors. They are

undesirable since they can degrade the system performance and cause serious con-

trol problems. Several experimental and analytical studies had been performed over

past decades. Different analytical models had been proposed for different types of

flow instabilities. However, there are still issues to be resolved for a general stability

problem. Especially, flow instabilities that may occur at low-pressure and low-flow

conditions need to be clearly understood based on experimental data and reliable an-

alytical models, since under these conditions, the instabilities can be most commonly

encountered.

In this chapter, the state-of-the-art of the stability issue in two-phase flow sys-

tems is highlighted by emphasizing the importance of the problem in BWR systems.

Because of the strong coupling between the flow-temperature or void-fraction field

and neutron field, instabilities in BWR systems accompany with oscillation in both

flow and power. The void-reactivity is the most significant component of the feedback

loop and it creates the additional link between the oscillations in the flow and power.

2.1 Classification of Flow Instabilities

Identification and classification of physical mechanisms that lead to unstable

conditions in two-phase flow systems are important not only for proper design but

also for taking the necessary precautions for mitigating the instabilities. The flow

instabilities, in general, cause forced mechanical vibration on system components,

thermal oscillations, control problems and may even lead to the premature burnout
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of the heated surface. Combining all these effects, proper operation of the equipment

is difficult once unstable behavior occurs.

The instability issue is more complicated in BWRs. Because of strong coupling

of thermal-hydraulics and neutron field which are interrelated by means of neutronic

feedbacks such as void-reactivity and fuel temperature or Doppler feedback, coupled

flow-power oscillations can be potentially encountered in these reactors.

Instabilities in general are classified into two main categories, namely static and

dynamic instabilities. There are many review studies on instabilities [2, 3, 4]. The

classification based on physical mechanisms is more appropriate since each type has

a similar methodology for analysis. Before proceeding further on different types of

flow instabilities, it is worthwhile to introduce some definitions:

Steady Flow: Flow is said to be steady if the system parameters are functions of

spatial variables only. However, normally flow shows some small fluctuations

due to turbulent two-phase flow or nucleation process.

Stable Flow: Flow is said to be stable if, when it is momentarily disturbed, its new

operating conditions tend asymptotically towards the initial ones.

2.1.1 Static Instabilities

Static instabilities are governed by the steady-state characteristic of the system.

Pressure drop characteristics of a flow channel, nucleation properties, and flow regime

transitions play important roles on characterization of these type of flow instabilities.

The important static flow instabilities can be listed as follows:

1. Flow Excursion (Ledinegg Instability)

2. Critical Heat Flux (CHF) or Boiling Crisis

3. Flow Regime Transition Instability

4. Geysering, Chugging, and Vapor Burst
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Among these instabilities, the flow excursion is the most important flow instability of

significant consequences. Ledinegg [5] first identified and analyzed the problem. The

instability is also called Ledinegg Instability. The flow excursion involves a sudden

change in the flow rate, normally from high flow to a very low flow. It occurs when the

slope of the channel demand pressure drop vs flow rate curve becomes algebraically

smaller than the slope of the loop supply pressure drop vs flow rate curve. The

criterion for this instability can be written as

∂∆Pint

∂υin

<
∂∆Pext

∂υin

(2.1)

where ∆Pint is the steady-state pressure drop along the flow channel, which is the

internal characteristic of the channel, and ∆Pext is the supply pressure drop which

drives the flow. The channel inlet velocity is denoted by υin.

This behavior requires that the channel characteristics exhibit a region where

the pressure drop decreases with increasing flow. In two-phase flow, the friction and

convective acceleration terms in the total pressure drop may increase with decreasing

flow. For most of the systems of interest, the supply pressure drop for a channel is

nearly constant. This applied to a parallel channel system and channel accompanied

with a large bypass. Maulbetsch and Griffith [6] tested a low-pressure, subcooled

boiling system for flow excursion by paralleling the heated channel with a large bypass.

They observed that CHF occurs well below the values calculated by using conventional

CHF correlations. They also concluded that excursions leading to CHF were observed

near the minima in the pressure drop versus mass flow rate curve.

CHF is another important instability associated with the change in heat trans-

fer mechanism and sudden rise in wall temperature but it is not a flow instability.

However, flow instabilities are one of the phenomena that may lead to CHF. Flow ex-

cursion induced CHF has been analyzed and its implication in fast reactor safety has

been discussed [7]. Mathisen [8] observed that boiling crisis occurred simultaneously

with flow oscillations in a boiling water channel at pressure higher than 6 MPa.
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The third static instability is the flow regime transition instability. It is a

relaxation instability caused by different pressure drop characteristics of different

flow patterns. As it is well known that bubbly and churn-turbulent flows have a

larger pressure drop compared to annular and annular-mist flow. One may consider

a two-phase flow channel subjected to a constant pressure drop boundary condition

and assume that churn-turbulent flow regime exists at the channel exit, and the

flow at the channel inlet is decreased for a while. At the reduced flow condition,

annular flow regime occurs at the channel exit where pressure drop is smaller. Since

the imposed pressure drop is constant, it causes the flow to accelerate. At the new

flow conditions, annular flow regime cannot be sustained. The cyclic flow regime

pattern change results in flow oscillations. Even though the instability is oscillatory

in nature, its basic characteristics lie on the steady state pressure drop of different flow

patterns. Jeglic and Grace [9] observed cyclic flow pattern transition with oscillatory

behavior, however it is not clear whether the flow pattern transition is the cause or

the consequence of density wave propagation.

Geysering, chugging and vapor burst are important static flow instabilities,

which may occur in natural circulation boiling water reactors and some liquid metal

cooled reactors. Especially, geysering is a phenomenon which may be encountered

during the startup of Simplified Boiling Water Reactor (SBWR). Geysering has been

observed in a variety of closed end, vertical columns of liquid, which are heated at

the base [10, 11]. When the heat flux is high and flow is low, boiling is initiated at

the base. In low-pressure systems, this results in a suddenly increased bubble size

due to reduction in hydrostatic head, and usually an expulsion of vapor from the

channel. The liquid then returns and subcooled non-boiling conditions are restored,

and cycle starts over again. The cyclic void appearance and disappearance may lead

to an operational problem during the startup of natural circulation BWRs at very low

pressure. This phenomenon depends on the nucleation characteristics of the channel

wall, system geometry and operational conditions.
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2.1.2 Dynamic Instabilities

Most of the practical flow instability problems are dynamic in nature. The

process is governed by inertia and feedback effects and by the whole system response

rather than by the local thermal-hydraulic conditions. Therefore, the transient form

of the governing equations for the system of interest should be solved for the analysis.

In the analysis of dynamic flow instabilities, two important aspects should be

taken into account:

1. Any disturbance needs some time to propagate and induce other disturbances

with a certain time lag.

2. System has several feedback mechanisms.

In the first aspect, the important phenomenon is the wave type by which disturbances

are propagated. In two-phase flow systems, the disturbances are mostly propagated

by two different waves:

1. Pressure or Acoustic Wave

2. Kinematic Wave or Density (Void) Wave

These two types of waves are always present in the system of consideration. The

pressure wave is characterized by sonic speed inside the two-phase mixture. Kinematic

waves or density waves are characterized by kinematic wave velocity, which is close to

the vapor velocity. Therefore, the kinematic waves have much lower speed than the

acoustic waves. Basic characteristics of the dynamic flow instabilities are explained

in terms of these waves. Oscillation frequency of the dynamic instabilities is related

to the dominant wave velocity in the system and the residence time of the wave.

For instance, oscillations governed by the pressure waves have higher frequencies.

Important dynamic instabilities can be listed as follows:

• Density Wave Oscillations (DWO)

• Acoustic Oscillations
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• Pressure Drop Oscillations

• Thermal Oscillations

Most common dynamic instability encountered in two-phase flow systems is

DWO. One may consider a boiling channel with a constant pressure drop boundary

condition. A temporary reduction in the inlet flow in a heated channel increases the

rate of enthalpy rise, thereby reducing the non-boiling length. In the single phase

region, the enthalpy wave is propagated with the liquid velocity, thus there is a time

lag due to this propagation. The perturbation is translated to the void or density

perturbation in the two-phase region. Since there is time needed for the propagation

of the density wave in the two-phase region, time lag appears between the channel

inlet flow and the two-phase pressure drop. For certain combinations of geometrical

arrangement, operating conditions, and boundary conditions, the perturbations may

acquire 180◦ out-of-phase pressure drop fluctuations at the exit. The perturbations are

then transmitted to the inlet flow rate and become self-sustained. In this instability,

the phase-shift occurs because of the delay introduced by the propagation of the

enthalpy and void or density waves. The period of the oscillations is on the order of the

residence time of the coolant inside the channel. These are low-frequency oscillations

and the compressibility of the phases is not important parameter in the physical

mechanism. This is the most common instability mode in the current operating

BWRs and extensive experimental and analytical studies have been carried out to

eliminate this instability.

The formulation of the problem by using one-dimensional drift-flux model has

been performed by Ishii [12, 13]. The formulation of the problem was general in the

sense that it accounts for the dynamics of the flow in single phase heated, two-phase

heated and two-phase unheated sections of a flow loop. The formulation neglects the

thermodynamic non-equilibrium and accounts for the mechanical non-equilibrium

between the phases with a given constitutive relation for the drift velocity. The

governing equations are perturbed around the steady state and the characteristic
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equation is obtained by integrating the mass, energy, and momentum equations for

the single phase and the two-phase regions. The characteristic equation is written in

terms of dimensionless numbers that govern the system static and dynamic conditions.

These dimensionless numbers are important not only for understanding the physical

phenomenon for low frequency oscillations but also for scaling an experimental facility

that can be used for the simulation of the flow instabilities and other transients such

as LOCAs in the prototype systems. In that study, the dimensionless stability plane

has been proposed for presenting stability boundary of a two-phase flow system. The

stability plane which has the axes of Zuber Number and Subcooling Number became a

standard for the stability map. The comparison with experimental data showed good

agreement as far as stability boundary and oscillation frequency are concerned. This

study has been extended by Saha [1] by accounting for the thermal non-equilibrium

effects between the phases. The stability boundary has been presented on the same

plane, and it has been shown that it gives very similar results especially at high

subcooling. The detailed discussion of the problem in BWR systems can be found

in [14, 15].

In contrast to the low frequency density wave oscillations, acoustic instabilities

governed by the propagation of the acoustic waves are high frequency oscillations and

the compressibility effects are important. Even though it has little importance in

practical nuclear engineering problems, there has been research on these oscillations

in relation to the rocket engine stability problems. Several authors [16, 17] have

reported that pressure oscillations of relatively high frequency are observed when the

systems are operated under high subcooling conditions. As a rule of thumb, the

acoustic oscillations need to be considered when a system has Mach number greater

than 0.1.

Another important dynamic instability is the pressure drop oscillations. This

type of instability is observed in systems which are operated on the negative slope

portion of the pressure drop versus flow rate curve and are associated with a com-

pressible volume. This instability is a compound instability which is the result of the
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combination of the flow excursion and the density wave oscillations.

The thermal oscillations are associated with the thermal response of the heating

wall after dryout as identified by Stenning and Veziroglu [18]. It was suggested

that flow could oscillate between film boiling and transition boiling at a given point,

thus producing large amplitude temperature oscillations on the channel wall. The

thermal oscillations have been found to have periods of approximately 80 sec in their

experiments.

The instabilities mentioned here are based on classification of leading physical

mechanisms. The boundary conditions introduced in the problem and geometrical

arrangement of the system are also important and might yield different oscillation

modes. The boundary conditions of the problem can be also important for identifying

feedback mechanisms. In pure thermal-hydraulic instabilities, there are two common

types of boundary conditions considered:

1. Hydrodynamic Boundary Conditions are given as the pressure drop across the

channel or the inlet flow rate and pressure. The geometry of the problem is

important in determining the suitable boundary conditions. For example, in

natural circulation systems, if flow is governed by a constant gravity head, the

constant pressure drop boundary condition is applicable. This type of boundary

condition is appropriate when a typical single channel is considered with a large

number of parallel channels where the average of the majority channels give the

stable pressure drop.

2. Thermal Boundary Conditions are given at the boiling channel inlet as the

inlet subcooling or the heated wall temperature, which is the solution of heat

conduction problem in the wall. The inlet subcooling given in the problem

might be oscillatory in nature. In general, thermal boundary condition at the

channel inlet is the solution of the thermal-hydraulic problem in other part of

the system.

The detailed review of the problem can be found in Ref. [2]. Table 2.1 summa-
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rizes many instability types encountered in practical engineering applications. How-

ever, the instability issue in BWRs requires much more detailed attention because of

its complexity. In the following sections, the flow instabilities in BWR systems are

highlighted.

2.2 Stability Problem in Current BWRs

As described in the previous sections, two-phase flow systems are vulnerable to

different types of flow instabilities either static or dynamic in nature. The problem

in BWRs is much more complex because different considerations come into play.

First, BWR systems have strong coupling between the thermal-hydraulics and the

neutronics via the void reactivity and the fuel temperature feedbacks. The most

important feedback is due to the void since the coolant in BWRs also serves as the

moderator. Any change in the moderator density via change in the void fraction

affects thermal neutron population (via neutron moderation). This changes the heat

generation rate inside the fuel and feedbacks to core thermal-hydraulics. The problem

in BWRs becomes more complicated since the balance of the plant part should also

be considered to account for the feedbacks from feedwater temperature and reactor

dome pressure.

BWR plants have been designed since 1950s and put into operation starting

from early 1960s [14]. The stability had been the major concern during the design

development stage of BWRs and extensive experimental and analytical studies had

been performed [19]. Starting from 1960s, different BWR types had been designed

and some of them had been built. The ones that had been built and operated are

• Natural Circulation BWR (DODEWARD)

• External Recirculation with Jet Pump BWR (GE)

• Internal Recirculation-Pump BWR (Japan, Sweden)
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Table 2.1. Classification of Flow Instabilities

Class: Type: Mechanism: Characteristics:
Static Insta-
bilities

Flow Excur-
sion

Negative Slope of ∆P
vs. ṁ curve

Flow undergoes sud-
den, large amplitude
excursion to a new,
stable operating con-
dition

Boiling Crisis Ineffective removal of
heat from heated sur-
face

Wall temperature ex-
cursion and flow os-
cillations

Flow Pattern
Transition In-
stability

Churn-Turbulent
flow has higher ∆P
than that of annular
flow

Cyclic flow pattern
transitions and flow
rate variations

Bumping,
geysering or
chugging

Periodic adjustment
of meta-stable con-
dition, usually due
to lack of nucleation
sites

Periodic process of
superheat and vio-
lent evaporation with
possible expulsion
and refilling

Dynamic In-
stabilities

Acoustic Os-
cillations

Resonance of Pres-
sure Waves

High frequencies
(10-100 Hz) related
to time required
for pressure wave
propagation in the
system

Density Wave
Oscillations

Delay and feedback
effects in relationship
between flow rate,
density and pressure
drop

Low frequencies (1
Hz) related to tran-
sit time of a continu-
ity wave

Pressure Drop
Oscillation

Flow excursion initi-
ates dynamic interac-
tion between channel
and compressible vol-
ume

Very low frequency
(0.1 Hz) process

Thermal Os-
cillations

Interaction of vari-
able heat transfer co-
efficient with flow dy-
namics

It occurs in film boil-
ing
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All BWR types listed above have quite similar internal characteristics. The typical

BWR vessel internals are

• Upper and Lower Downcomer

• Recirculation Pumps (internal or jet pumps)

• Lower Plenum

• Reactor Core

• Upper Plenum and Chimney

• Separator Assemblies

• Steam Dryer

• Steam Dome

For complete analysis of a BWR instability problem, all internal component of the

reactor pressure vessel (RPV) should be modeled. However, the unstable flow behav-

ior is most important inside the core region. For proper modeling and calculation of

core boundary conditions, ex-core systems should be taken into account. Some of the

ex-core related parameters are listed below:

1. Pressure drop caused by geometrical discontinuities (especially at the core and

steam separator inlet)

2. Length and volume of the chimney section

3. Subcooling at the core inlet and the amount that can be changed by recirculation

flow

4. Downcomer water level

5. Flow distribution in lower plenum towards fuel bundles
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The BWR core is composed of several bundles supported by lower core support plate

and separated from the downcomer by a shroud. Each fuel bundle has a number

of fuel rods arranged in square lattice and contained by a square zircaloy box. The

region between the fuel bundles is occupied by single-phase bypass coolant. Cruciform

control blades and in-core flux detectors are inserted in this region. The function of

the fuel boxes or fuel cans is

• To ensure sufficient moderation at the upper part of the core

• To prevent transversal mixing of mass flow of coolant

• To properly control the void distribution and flow

Depending on the fuel design, some of the fuel rods are replaced by water rods to

enhance moderation. A small part of the total power in the reactor core (≈5%) is

generated in non-fuel regions (bypass coolant) because of the neutron moderation and

the attenuation of γ-rays. In addition, some of the heat is transferred from the inside

of the fuel bundles in which warmer coolant flows. Direct generation of heat in the

bypass and coolant region is also called “Direct Heating” and can be important in

stability problem.

For the stability problem, some of the important core-related parameters are

listed as follows:

1. Axial power distribution (single-channel or core-wide oscillations)

2. Radial (global) power distribution (regional oscillations)

3. Fuel material and geometry (fuel conductance and its response time)

4. Reactivity coefficients (void and Doppler)

5. Core bypass flow area or fraction of bypass flow

6. Fuel bundle type and fuel burnup distribution

7. Control blade insertion pattern
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As mentioned before, the balance-of-the-plant part of a BWR system is important

for supplying boundary conditions for RPV. Balance-of-the-plant is defined as com-

ponents and systems, which are necessary to convert thermal energy to electricity

with efficiency (including turbine, condenser, feedwater heaters, moisture separators,

relevant control systems, etc.). The parameters relevant to the instability issue in

BWRs are

1. Feedwater flow rate and temperature

2. Steam dome pressure (controlled by turbine and turbine bypass valve)

3. Recirculation pump velocity (mainly controlled by turbine shaft load)

4. Feedwater preheaters’ dynamics (affecting feedwater temperature)

Because of dynamic interaction of different physical processes, the proper modeling

strategy of a BWR system is important not only for instability but also for the

understanding of the static and dynamic characteristics of the plant. In order to

clarify the phenomenon, Figure 2.1 demonstrates the basic physical processes involved

in a BWR plant by showing the interactions in the processes. The accurate description

of the reactor behavior during an instability event requires the modeling of each

process. The analysis performed for a BWR instability problem has the following

components:

1. Determining the stability margin during both normal and off-normal operating

conditions

2. Predicting the transient behavior of the reactor parameters during unstable

conditions such as the amplitude of oscillations

3. Designing and assessing the effectiveness of countermeasures adopted to prevent

and mitigate the consequences of instabilities

In order to achieve these, it is necessary to establish realistic models for the physical

phenomena and mechanisms that lead to unstable flow conditions. It is known that
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Figure 2.1. Physical Processes Involved in BWR Stability
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the BWR stability problem is a result of complex interactions of thermal-hydraulics

and neutronics, therefore models developed for the problem should account for both

phenomena.

In a BWR core, different oscillation patterns might exist [20]. Each oscillation

pattern requires different analysis approach. The oscillation patterns are

• Single-channel oscillations

• Core-wide oscillations

• Core-regional oscillations

In core-wide oscillations, similar to single-channel oscillations, all channels in the core

behaves as if they are one single channel, while in core regional oscillations (also called

out-of-phase oscillations) modeling of parallel channels, in which flow oscillates with

certain phase shift, is necessary. In any case, boiling boundary dynamics, calcula-

tion of pressure drop components along the channel, heat conduction dynamics, heat

transfer and flow regime determination are all necessary to address the issue properly.

The implementation of neutronic feedbacks is also important and modeling can be

done by either point kinetic model or three-dimensional kinetic model depending on

the mode of oscillations that are being studied.

Recirculation loop dynamics is important for determining the core boundary

conditions. In general, flow instabilities in a conventional BWR core can be analyzed

by considering the core section only with appropriate boundary conditions. However,

more accurate treatment of the problem requires the modeling of recirculation flow

path including the phenomena of liquid-steam separation, recirculation, downcomer

water mixing, lower plenum velocity field, etc. Exact treatment of core boundary

conditions also requires the consideration of the balance-of-the-plant, since the dome

pressure and the feedwater temperature are determined from the turbine-side dynam-

ics.

The stability of a system can be quantified by analyzing the response of the

system to a given perturbation. The stability, in absolute sense, can be derived by
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analyzing the system response, i.e., whether it diverges from or converges to the initial

state. The detailed analysis mostly depends on the level of the modeling and the main

focus of the analysis. There are two most common tools for instability analysis:

1. Frequency Domain Analysis (linear)

2. Time Domain Analysis (nonlinear)

In frequency domain method, governing equations are linearized assuming small per-

turbation around steady state. By taking the Laplace transform, the problem can

be converted into frequency domain and a transfer function for each process can be

derived. By combining the transfer functions, overall characteristic equation can be

derived and the stability of the system can be analyzed based on basic properties of

the equation. There are many computer codes that have been developed for BWR

stability issue. Lahey et al. [21] developed the computer code NUFREQ for nuclear-

coupled oscillations in BWRs. The program was then updated by Park [22]. These

methods are good for generating stability maps and analyzing parametric effects.

However, it is impossible to observe the nonlinear effects on the phenomenon such as

the amplitude.

In the time domain analysis method, the complete transient form of the equa-

tions is solved by using a wide variety of numerical methods. For the purpose of

analysis, system analysis codes, such as RAMONA-4B, TRACE, and RELAP5, may

be used, however the user shoud be careful about the code capability limit due to the

numerical method and the model. There are also small scale computer codes used

for stability analysis. For instance, Yokomizo [23] has developed a computer code

which accounts for the non-equilibrium effects in two-phase flow, multi-channel core

arrangement and neutron kinetics for oscillations in BWRs. The program has been

adopted to commercial size BWRs and it has been concluded that the current design

with frequency domain analysis is valid for finite disturbances.
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2.3 Stability Problem in Natural Circulation BWRs

Natural circulation as a passive heat removal mechanism in both normal oper-

ations and accidental conditions has been studied extensively since 1950s. The early

studies focused on steady natural circulation for both single-phase and two-phase

flows. Through the early work, the utilization of natural circulation flow as a pas-

sively safe method to cool down the nuclear reactor under different scenarios has

become increasingly practical for many types of reactors. Since the two-phase mix-

ture has considerably smaller density compared to the single-phase liquid, two-phase

natural circulation might produce much larger flow and provide better cooling capa-

bility. This is paricularly true for water reactors where the coolant has a large latent

heat, thus two-phase boiling heat transfer is also efficient. However, two-phase flow

instabilities can accompany the natural circulation flow. This is a concern in next

generation BWRs, which use natural circulation to drive the core flow, e.g., SBWR

and ESBWR. Especially, the startup phase of these reactors is vulnerable to insta-

bilities due to low pressure and low flow conditions. Geysering and flashing induced

instabilities are most probable instability types and may impose a serious problem

when flow oscillations are coupled to the core power via neutronic feedbacks.

Aritomi et al. [10, 11] and Chiang et al. [24] conducted fundamental studies of

geysering in a parallel-channel natural circulation loop with the aim of establishing

a rational startup procedure. They pointed out that in-phase natural circulation

oscillation was induced by hydrostatic head fluctuations in a non-heated channel due

to insufficient vapor generation. The effect of superheated liquid and flashing at the

chimney section on the instabilities were not addressed in their work.

Inada et al. [25] investigated flow instabilities in a boiling natural circulation

loop with a chimney. Their work revealed that adiabatic flashing due to decrease in

gravity head in the chimney plays an important role in the two-phase instability. The

type of instability that occurred in their experiments was suggested to be density wave

oscillations due to flashing in the chimney. In relation to the Three-Mile Accident

(TMI), Lee and Ishii [26] performed a two-phase natural circulation instability study
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in a simulated B&W light water reactor geometry. Here they found that the flashing in

the riser section induced large amplitude cyclic instability. Other instabilities which

can occur has been found to be DWO and manometric oscillations. Babelli [27]

incorporated the effect of void generation due to flashing in the chimney section into

his model for the stability boundary of a low-flow and low-pressure natural circulation

system.

Paniagua et al. [28] also emphasized the pressure dependency of the local

thermal-hydraulic parameters in the prediction of possible startup instabilities. In

their model, the local parameters were calculated based on local pressure estimated

using the steady-state distribution. The model was validated with the experimental

data obtained in a low-pressure natural circulation loop at high subcooling.
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Analytical Modeling
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3. FLOW FIELD FORMULATION

The formulation of the problem is kept general such that it considers DWOs are

discussed in this chapter. The objective is to develop a model for these two instability

types to understand the leading physical phenomena in the dimensionless space. The

solution of the steady state form of the governing field equations for the flow excursion

and the frequency domain representation for the DWOs as described by Ishii [12] are

used to investigate the problem.

The problem formulation is kept general in such a way that the model considers

the single-phase heated section, the two-phase heated and unheated sections of a

typical two-phase flow system. Based on this arangment of the flow, the modeling

results are applied for the analysis of the flow excursion and DWOS in a single heated

channel and a natural circulation loop.

One dimensional drift flux model is used for the two-phase flow and the sub-

cooled boiling is taken into account by introducting Saha-Zuber [29] departure en-

thalpy model for the point of net vapor generation (PNVG) and Levy [30] profile fit

model for the volumetric vapor generation in the subcooled boiling.

The model equations are introduced for each region (single-phase and two-

phase) based on some simplifying assumptions. With given scaling variables, the

dimensional analysis is carried out to derive the dimensionless groups for the problem

of consideration.

As briefly described in Chapter 2, the flow excursion stability criterion can be

derived based on the steady state solution of the field equations. However, for the

DWOs, the solution of the transient field equations is needed to describe the phenom-

ena. Linear stability provides a basic tool for understanding the dynamics instability

in the frequency domain by means of the Laplace Transform of the linearized equa-
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tions.

3.1 Description of the Flow Systems

Two different flow systems are considered in the present analysis. The first

system demonstrates a typical BWR flow channel in the form of a bundle. The

schematic is demonstrated in Figure 3.1. In most of the practical problems, constant

pressure drop boundary condition for a single channel is valid especially for parallel

channel systems. As shown in Figure 3.1, a bypass channel is associated to the

heated channel as a parallel channel. When most of the flow is through the bypass

section, which is the single phase flow, the pressure drop across the heated channel

is determined by the stable bypass flow. The bypass channel also simulates the

stable channel in a BWR core when few channel oscillates with certain frequency

while the flow in the other channels is stable. In either case, the heated section can

be characterized with a single heated channel. The inlet and the outlet plenum in

Figure 3.1 represent constant pressure reservoirs. The pressure difference between

two plenums drives the flow. Single-phase coolant enters the heated section with a

certain amount of subcooling. As it is heated inside the channel, it reaches to the

saturation (or PNVG) and the two-phase flow appears in the channel. The flow leaves

the channel with a certain void fraction. Therefore, two different regions (single-phase

heated and two-phase heated) describes the channel thermal hydraulics for the system

shown in Figure 3.1.

The second system shown in Figure 3.2 is a simplified version of the typical

two-phase natural circulation loop, which can be applied to the SBWR design. The

gravity head in the downcomer section drives the flow and it can be assumed constant.

Therefore, the constant pressure drop boundary condition from the heated section

inlet to the unheated section outlet is valid. The two-phase unheated section, which

is characterized as a riser is considered adiabatic. The flow area is considerably

larger than the heated section and the gravitational pressure drop is dominant in

the total pressure drop in the riser section. The two-phase mixture is separated in

the separator/dryer section and the separated steam leaves the loop. The separated
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Figure 3.2. Typical Flow Arrangment for a Natural Circulation System
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liquid is mixed with cold feedwater and flows downward inside the downcomer and

completes the circulation loop. The frictional loss is also negligable in the downcomer

and can be considered adiabatic similar to the riser section.

3.2 One Dimensional Drift Flux Model

Drift Flux Model is a valuable tool in two-phase flow problems. Especially

for the steady state analysis or the mild transients in BWRs, Drift Flux Model can

be used to overcome the diffuculties associated with the two-fluid Model [31]. In the

Drift Flux Model, the velocity field is expressed in terms of the mixture center-of-mass

velocity and the drift velocity of the vapor phase. The most important assumption

in the model is that the dynamics of the phases can be expressed by the mixture

momentum equation with the kinematic constitutive equations specifying the relative

motion between the phases. The detailed discussion on the Drift Flux Model and the

derivation of the three-dimensional form of the field equations resulting from the time

or the statistical averaging can be found in Ref. [32].

One dimensional form of the Drift Flux Model can be obtained by applying the

area-averaging to the three-dimensional form of the field equations as described in

Ref. [33]. A simple area averaging of a variable Ψ over the cross sectional area A is

defined as

〈Ψ〉 =
1

A

∫

A

ΨdA (3.1)

The area averaging can also performed over the phasic area. For instance, the area-

averaged kth phase (either liquid,f , or vapor, g) variable Ψk is defined as:

〈〈Ψk〉〉 =
〈Ψkαk〉
〈αk〉 (3.2)

In the formulation, it can be assumed that phase density within each phase is uniform

(〈〈ρk〉〉 = ρk). This assumption is reasonable when the transverse pressure gradient

is relatively small compared to the axial one. Therefore, the area-averaged mixture
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density can be defined as

〈ρm〉 = ρf − 〈α〉∆ρ (3.3)

where ∆ρ = ρf − ρg is the density difference between liquid and vapor. The area-

averaged phasic velocities can be given as

〈〈υk〉〉 =
〈υkαk〉
〈αk〉 =

〈jk〉
〈αk〉 (3.4)

where 〈jk〉 is the superficial velocity or the volumetric flux of the phase k. Based on

the definitions given by Eqs. (3.3), and (3.4), the mixture velocity and the enthalpy

are defined by weighting with the mixture density

υm =
〈ρmυm〉
〈ρm〉 =

〈α〉ρg〈〈υg〉〉+ (1− 〈α〉)ρf〈〈υf〉〉
〈ρm〉 (3.5a)

im =
〈ρmim〉
〈ρm〉 =

〈α〉ρg〈〈ig〉〉+ (1− 〈α〉)ρf〈〈if〉〉
〈ρm〉 (3.5b)

where ik is the enthalpy of the phase k. In general, the vapor phase can be as-

sumed at saturation (ig = igs) while the liquid phase can be subcooled, saturated or

superheated.

The mean drift velocity, υgj is one of the important parameter for the closure in

drift flux model since it determines the kinematics of the flow with given area-averaged

mixture volumetric flux, 〈j〉.

υgj = 〈〈υg〉〉 − 〈j〉 = (Co − 1)〈j〉+ 〈〈υgj〉〉 (3.6)

where Co is the distribution paramater, which represents the covariance between the

mixture volumetric flux, j, and void fraction, α. The definition of the distribution

parameter, Co, is given as follows:

Co =
〈αj〉
〈α〉〈j〉 (3.7)
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The first term on the right-hand-side of Eq. (3.6) represents the global drift

while the second term represents the local drift of the vapor phase respect to the

mixture. The phasic velocities defined in Eq. (3.4) can be related to the mixture

volumetric flux,〈j〉, as a function of the two important drift flux parameters, namely

the distribution parameter,Co, and the mean drift velocity, 〈〈υgj〉〉,:

〈〈υg〉〉 = Co〈j〉+ 〈〈υgj〉〉 (3.8a)

〈〈υf〉〉 =
1− 〈α〉Co

1− 〈α〉 〈j〉 −
〈α〉

1− 〈α〉〈〈υgj〉〉 (3.8b)

3.2.1 Field Equations

In the drift flux model, different forms of continuity equations can be written

in terms of different velocity fields. In the following equation, the mixture continuity

equation is introduced:
∂〈ρm〉

∂t
+

∂〈ρm〉υm

∂z
= 0 (3.9)

By using the phasic velocities given by Eq. (3.4), the mixture velocity can be related

to the mixture volumetric flux as

υm =

(
ρf − Co〈α〉∆ρ

〈ρm〉

)
〈j〉 − 〈α〉∆ρ

〈ρm〉 (3.10)

Another continuity equation is written for the vapor phase by considering the com-

pressibility of the phase as follows:

∂〈α〉
∂t

+
∂〈α〉〈〈υg〉〉

∂t
=
〈Γg〉
ρg

− 〈α〉ηg
DgP

Dt
(3.11)

where ηg =
1

ρg

∂ρg

∂P
is the compressibility of gas phase, and 〈Γg〉 is the area-averaged

volumetric vapor generation rate.
Dk

Dt
is the material derivative for the kth phase
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defined in terms of the kth phase velocity:

Dk( )

Dt
=

∂( )

∂t
+ 〈〈υk〉〉∂( )

∂z
(3.12)

The equation for the mixture volumetric flux can be obtained from the vapor

and liquid continuity equations as,

∂〈j〉
∂z

= 〈Γg〉 ∆ρ

ρfρg

− 〈α〉ηg
DgP

Dt
− 〈1− α〉ηf

DfP

Dt
(3.13)

where ηf =
1

ρf

∂ρf

∂P
is the compressibility of the liquid phase. By means of Eqs. (3.13)

and (3.11), the void propagation equation is obtained as follows:

∂〈α〉
∂t

+ 〈Ck〉∂〈α〉
∂z

= 〈Γg〉
(

ρf − Co〈α〉∆ρ

ρfρg

)
(3.14)

+ 〈α〉
(

ηg
DgP

Dt

(
〈α〉Co − 1

)
+ ηf

DfP

Dt
Co

(
1− 〈α〉

))

where 〈Ck〉 is the kinematic wave velocity, which is given as

〈Ck〉 =

(
Co + 〈α〉 ∂Co

∂〈α〉

)
〈j〉+ 〈〈υgj〉〉+ 〈α〉∂〈〈υgj〉〉

∂〈α〉 (3.15)

When the void fraction dependency on the drift flux parameters is ignored, the kine-

matic wave velocity reduces to the vapor velocity. This is particularly valid in the

churn-turbulent flow, where Co and 〈〈υgj〉〉 are independent of the void fraction. The

first term on the right-hand-side of Eq. (3.14) is the source term due to heat transfer

or flashing, the second term represents the bubble sink/source due to compressibility

of the phases. Generally, the liquid can be considered as incompressible. The second

term in Eq. 3.14 becomes the source when the pressure gradient is negative. This

term may become significant in the chimney section at low pressure conditions.
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The momentum equation for the mixture is given by the following equation:

∂〈ρm〉υm

∂t
+

〈ρm〉υ2
m

∂z
= −∂P

∂z
+

∂(τzz + τT
zz)

∂z
− 〈ρm〉gz (3.16)

− fm

2Dh

〈ρm〉υm|υm| − ∂

∂z

( 〈α〉ρfρg

(1− 〈α〉)〈ρm〉υ
2
gj

)

− ∂

∂z

∑

k

COV (αkρkυkυk)

Since the problem is formulated in terms of the center-of-mass velocity of the mix-

ture, the mixture momentum equation in terms of the mixture velocity needs to be

solved. In the mixture momentum equation given by Eq. (3.16), τzz + τT
zz denotes

the normal component of the stress tensor in the axial direction. The third and the

fourth term on the right-hand-side of the equation represent the gravitatonal pressure

gradient and the two-phase frictional pressure gradient with two-phase friction factor

fm, respectively. The fifth term is for the pressure drop due to the drift. The last

term denotes the covariance which shows the difference between product of averages

and average of products.

The mixture enthalpy equation for One Dimensional Drift Flux Model is written

as

∂〈ρm〉im
∂t

+
∂〈ρm〉υmim

∂z
= −∂(q′′ + q′′T )

∂z
+

q′′wξh

A
(3.17)

− ∂

∂z

(〈α〉ρgρf

〈ρm〉 ∆ifgυgj

)
+

DjP

Dt
+ 〈Φm〉µ

− ∂

∂z

∑

k

COV (αkρkikυk)

where the substantial derivative,
Dj

Dt
, is defined in terms of the mixture volumetric flux.

The first term on the right-hand-side of Eq. (3.17) represents the axial conduction

heat flux, the second term is for the wall heat flux. The last term denotes the energy

dissipation, which can be neglected in most cases.

In the Drift Flux Formulation, the problem is solved for 〈α〉 and 〈j〉 with the
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given constitutive relation for υgj. The velocity field can be recovered by using Eq.

(3.8). Another important parameter to be supplied is area-averaged volumetric vapor

generation rate,〈Γg〉, which also accounts the thermodynamic nonequilibrium between

the phases.

3.2.2 Constitutive Equations for Drift Flux Parameters

As described in Section 3.2, the distribution parameter,Co, and the void-weighted

mean drift velocity,〈〈υgj〉〉, should be supplied via constitutive relations to close the

system for the velocity field. There are several correlations and models suggested for

these two parameters based on extensive experimental database. Ishii [33] derived

constitutive equations for the drift flux parameters by taking into account the inter-

facial geometry, the body force field, the shear stresses, and the interfacial momentum

transfer. The details of the equations are not reproduced here. However, three dif-

ferent flow regimes are emphasized; i. Bubbly Flow, ii. Churn-Turbulent Flow, iii.

Annular Flow. In general, the distrubution parameter has the following limits,

lim
〈α〉→0

Co = 0 , lim
〈α〉→1

Co = 1 (3.18)

lim
ρg/ρf→1

Co = 1

The bubbly flow generally appears below % 30 void fraction. The distribution

parameter and the void-weighted mean drift velocity for the bubbly flow are given by

the following equations,

Co =

(
1.2− 0.2

√
ρg

ρf

)(
1− e−18〈α〉

)
(3.19a)

〈〈υgj〉〉 =
√

2(1− α)1.75

(
σg∆ρ

ρ2
f

)0.25

(3.19b)

where σ is the surface tension. Eq. (3.19a) is also valid in the churn-turbulent regime.

However, the exponential term aproaches zero when void fraction increases. The

following two equations represents the distribution parameter, Co, and void fraction
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weighted drift velocity, 〈〈υgj〉〉, in the churn-turbulent regime:

Co =

(
1.2− 0.2

√
ρg

ρf

)
(3.20a)

〈〈υgj〉〉 =
√

2

(
σg∆ρ

ρ2
f

)0.25

(3.20b)

For the annular flow, the expressions are given as

Co = 1 +
1− α

α + 4
√

ρg

ρf

(3.21a)

〈〈υgj〉〉 =
1− α

α + 4
√

ρg

ρf

√
gD∆ρ

(1− α)

0.015ρf

(3.21b)

Equations (3.21a) and (3.21b) are simplified based on the assumption that ρg � ρf ,

which is valid especially at low pressure.

3.3 Subcooled Boiling

In the flow systems shown in Figure 3.1 and 3.2, the flow enters the heated

section of the channel as subcooled (Tin < Tsat) and its temperature rises due to

heat addition from the wall. At certain axial location in the channel, the fluid near

the wall becomes superheated and can nucleate a vapor bubble while the bulk liquid

temperature may still be lesser than the saturation temperature. When the subcooled

boiling starts, some part of the heat goes to the vapor formation and the other part

goes to increase the liquid temperature. During initial stage of the process, the wall

voidage occurs and void fraction value is very low. Because of the thermal boundary

layer developed over the bubble region, bubbles detached from the wall condenses in

subcooled liquid. After the bulk liquid temperature reaches certain value, bubbles

merge from the wall and increases the void fraction significantly. The point where sig-

nificant bubble departure occurs is called “Point of Net Vapor Generation”(PNVG).

This point separated the single phase flow from the two-phase mixture flow in the
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heated section. The general approach for specifying this point is to specify the bulk

liquid temperature or the enthalpy at which significant bubble departure occurs is

called “departure enthalpy”.

3.3.1 Departure Enthalpy

There are many proposed correlations to calculate the departure enthalpy [34,

35, 36]. However, Saha et al. [29] developed a very simple and elegant correlation

for the departure enthalpy. The developed correlation simply states that PNVG is

either controlled thermally or hydrodynamically depending on the value of the Peclet

number. At high inlet subcoolings, it has been stated that PNVG is independent

of the subcooling. This demonstrates that the PNVG is determined by the thermal

conditions on the wall. When the mass flow rate is low, the local Nusselt number

becomes the scaling parameter. The nusselt number is defined as

NNu =
q′′Decpf

kf (ifs − id)
(3.22)

where id is the void departure enthalpy, kf is the liquid thermal conductivity,cpf is the

specific heat of the liquid, ifs is the saturated liquid enthalpy, and De is the equivalent

hydraulic diameter. q′′ in Eq. (3.22) is the wall heat flux. It has been also shown that

the PNVG becomes independent from the hydrodynamics when the mass flow rate

is sufficiently high. Saha et al. [29] stated that the bubbles attached to the surface

enhance the surface roughness and therefore the conditions should correspond to a

scale of roughness. From Reynold anology, the stanton number becomes a scaling

parameter which is defined as follows:

NSt =
q′′

G(ifs − id)
(3.23)

where G is the mass flux.

In the Saha-Zuber model, the Peclet number, which is the ratio of the stanton

number and the nusselt number, is used to determine the division between thermally

3-12



and hydrodynamically controlled regions for the net vapor generation point. The

peclet number is defined as

NPe =
Gcpf

kf

(3.24)

Saha and Zuber [29] experimentally determined that the dividing line between the

regions is a peclet number of about 70, 000. If the peclet number is lesser than 70, 000

then the pnvg is thermally controlled. Otherwise, it is controlled hydrodynamically.

In each region, the stanton number and the nusselt number have been determined

experimentally. It has been found that nusselt number is constant around 455 in the

thermally controlled region. The correlation for the departure enthalpy is given by

the following equation;

ids = ifs −





0.0022
q′′Decpf

kf

NPe < 70000

154
q′′

G
NPe > 70000

(3.25)

3.3.2 Model for Volumetric Vapor Generation Rate

In this section, the modeling details for the volumetric vapor generation rate,〈Γg〉,1

accounting the subcooled boiling region are introduced. The derivation is based on

profile-fit-model. The idea of the model is given by the relation between the flow qual-

ity and the thermodynamic equilibrium quality, proposed by Levy [30]. The relation

is given by

x(z) = xe(z)− xed exp

[
xe(z)

xed

− 1

]
(3.26)

where xe is the thermodynamic quality, which can be determined from the mixture

enthalpy assuming thermodynamic equilibrium between the phasees. 〈xed〉 is the

thermodynamic equilibrium quality at PNVG, which is determined via the departure

entalpy. The equilibrium quality can be related to volumetric vapor generation rate

1For simplificity, the averaging symbol is removed from the two-phase flow parameters throughout
the chapter
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in thermal equilibrium conditions from the energy equation

G
dxe

dz
= Γs (3.27)

where Γs =
q′′ξh

A∆ifg

is the volumetric vapor generation at saturated boling which as-

sumes that all heat from the wall goes to vaporize the saturated liquid. ∆ifg is the

latent heat. Ah is the heated section flow area and ξh is the heated perimeter. It

can also shown that under the steady state conditions, the flow quality is related to

volumetric vapor generation rate as

G
dx

dz
= Γg (3.28)

By using Eq. (3.26), the volumetric vapor generation rate distribution along the

channel after PNVG is written as

Γ

Γs

= 1− exp

[
− z − λ

λs − λ

]
(3.29)

where λ is the PNVG and λs is the point where bulk liquid reaches the saturation

temperature. Figure 3.3 shows a typical void profile indicating the region of subcooled

boiling. As demonstrated in the figure, the volumetric vapor generation rate starts

from zero at the PNVG. Even though the wall voidage exists before the PNVG, the

void fraction is still very low and can be neglected hydrodynamically. The profile

given with Eq. (3.29) converges to Γs. However, the dimensionless profile given by

Eq. (3.29) approaches to one at infinity mathematically. This is rather simplified

model and gives reasonably accurate results under the steady state conditions [30].

Based on the model presented here, the void profile in a heated channel can be

written by solving the steady-state void continuity and the mixture volumetric flux

equations (Eqs. (3.11) and (3.13)). Neglecting the compressibility effects and using

the constant drift flux parameters, the steady state void fraction can be written as
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follows:

α(z) =

Γs

ρg

(λs − λ)

[
z − λ

λs − λ
+ exp

{
−

z − λ

λs − λ

}]

Coj + 〈〈υgj〉〉 (3.30)

where the area-averaged mixture volumetric flux, j(z) can be written as

j(z) = υf +
Γs∆ρ

ρfρg

(λs − λ)

[
z − λ

λs − λ
+ exp

{
−

z − λ

λs − λ

}]
(3.31)

For the modeling of the flow excursion, the momentum equation needs to be in-

tegrated and the profile given by Eq. (3.30) makes the analytical integration difficult.

Therefore, the axial-averaged value for Γg can be used in the modeling by conserving

the total area under the Γ(z) curve to get simplified expression for the pressure drop

components:

〈Γ〉 = CgΓs (3.32)

where the multiplier, Cg is defined as

Cg = 1− λs − λ

lh − λ

[
1− exp

{
−

lh − λ

λs − λ

}]
(3.33)

where lh is the heated length of the heated section.

3.4 Governing Equations

In this section, the governing equations for the modeling of the flow instabilities

are presented. The equations in dimensional space are given for the two different

regions; Single-Phase Region and Two-Phase Mixture Region. For simplicity, the

averaging operators are omitted from the field equations. However, the parameters

in the equations presented in this section must be understood as area-averaged pa-

rameters.
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3.4.1 Single Phase Flow

The flow enters the channel as subcooled and until it reaches to void departure

temperature single phase flow exists in the channel. The continuity equation for the

liquid can be written by assuming constant liquid density as follows:

∂υf

∂z
= 0 (3.34)

which implies that υf is spatially uniform and equals to inlet velocity, υfin(t), which

changes in time. For the boiling boundary determination, single phas energy equation

needs to be solved with boundary condition introduced at the channel inlet as the

subcooling, ∆isub = ifs − ii. At the boiling boundary, the void departure enthalpy

given by Eq. (3.25) is used. The single phase energy equation in the heated section

is given as:
∂if
∂t

+ υfin
∂if
∂z

=
q′′ξh

Ahρf

(3.35)

The wall heat flux is axially uniform in the channel and the wall heat capacitance

is neglected. Therefore, the wall heat flux can be directly related to the heat gen-

eration. This is reasonable approximation especially for solids having high thermal

conductivity and low heat capacity.

The momentum equation in the single-phase region is written as follows:

−dP

dz
= ρf

dυfin

dt
+

f1φ

2De

ρfυ
2
f + ρfg sin(θ) +

1

2
Kinρfυ

2
finδ(z) (3.36)

where the normal component of the axial shear stress and the covariance in the ve-

locity have been neglected. The angle, θ, in Eq. (3.36) shows the channel orientation.

For instance, θ = 90 defines the vertical upward flow. Kin is the flow loss coefficient

at the channel inlet.

3.4.2 Two-Phase Mixture Flow

In the two-phase mixture region, the one dimensional drift flux model is used

with some simplifying assumptions. First of all, the compressibility effects are ne-
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glected. Moreover, the drift flux parameters, Co and 〈〈υgj〉〉 are assumed to be con-

stant, i.e. independent from the flow regime. This assumption simplifies the analytical

modeling results.

The mixture continuity equation can be written as

∂ρm

∂z
+

∂ρmυm

∂z
= 0 (3.37)

With simplifying assumption, the void wave equation given by Eq. (3.14) reduces to

the following form
∂α

∂t
+ Ck

∂α

∂z
= Cg

Γs

ρg

(3.38)

which can be written as density wave equation by means of Eq. (3.3):

∂ρ+
m

∂t
+ Ck

∂ρ+
m

∂z
= −CoCg

Γs∆ρ

ρfρg

(3.39)

where Cg is the multiplier defined in Eq. (3.33) to account for the subcooled boiling,

and ρ∗m is the modified density which can be related to the mixture density as follows:

ρm =
Co − 1

Co

+
1

Co

ρ+
m (3.40)

In Eq. (3.38), the kinematic wave velocity,Ck, becomes:

Ck = Coj + 〈〈υgj〉〉 (3.41)

which is the void-weighted vapor velocity. The mixture volumetric flux equation is

simplified from Eq. (3.13) as follows:

∂j

∂z
= CgΓs

∆ρ

ρfρg

(3.42)

The boundary condition for Eq. (3.42) is given at boiling boundary. At z = λ,

j = υf (λ, t), which is the channel inlet velocity.
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As described in the previous section, the volumetric vapor generation rate can

be related to the parameters which can be obtained from the single-phase energy

equation and the void-departure enthalpy correlation. Therefore, the energy equation

for the mixture given by Eq. (3.17) is redundant.

The mixture momentum equation including the effect of the drift stress is given

as follows:

−dP

dz
= ρm

∂υm

∂t
+ ρmυm

∂υm

∂z
+

fm

2De

ρmυ2
m + ρmg sin(θ) (3.43)

+
∂

∂z

[
ρf − ρm

ρm − ρg

ρfρg

ρm

υ2
gj

]
+

1

2
Keρmυ2

mδ(z − lh)

where the two-phase friction factor ,fm, can be related to f1φ by introducing a multi-

plier, Cm. This multiplier modifies the two-phase friction multiplier, Φ2
lo, written for

the Homegenous Equilibrium Model (HEM);

Φ2
lo = Cm

[
1 +

∆ρ

ρg

〈x〉
]

(3.44)

The value ranging from 1 to 2 for Cm is reasonable for the appropriate two-phase fric-

tional pressure drop calculations. Ke in Eq. (3.43) represents the flow loss coefficient

at the heated channel exit.

3.5 Dimensionlal Analysis and Scaling

In this section, the dimensionless analysis is carried out to derive the dimension-

less groups for the static and the dynamics of a general two-phase flow systems based

on the sipmlifying assumptions described before. The analysis is given by choosing

proper scaling parameters for the system. The details of the system is described by

Ishii [12].

Table 3.1 shows the scaling variables used for several dimensions and parameters

in the problem. For the time, inverse of the reaction frequency, Ωs, is used. It is also
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Scaled Variable Scaling Parameter
Time Ω−1

s

Length lh
Area Ah

Density ρf

Velocity Ωslh

Enthalpy
1

∆ifg

∆ρ

ρg

Pressure ρf (Ωslh)
2

Table 3.1. Scaling Variables in Dimensionless Analysis

called the “charactertistic frequency of the phase change”, which is defined as follows:

Ωs = Γs
∆ρ

ρfρg

(3.45)

The channel heated height,lh, is chosen as the length scale. Therefore, the hy-

draulic diameter,De, and the heated perimeter,ξh are scaled by lh. Furthermore, the

charactertistic velocity becomes Ωslh, which can be noticed from Eq. (3.42). There-

fore, the dimensionless channel inlet velocity is defined as follows:

υ∗fin =
υfin

Ωslh
(3.46)

The heated section flow area scales the area. The liquid enthalpy is scaled by

using the latent heat and the density ratio. The dimensionless enthalpy definition

includes the scaling these scaling parameters as follows:

N∗
s =

ifs − i

∆ifg

∆ρ

ρg

(3.47)

3.5.1 Dimensionless Governing Equations

Based on the scaling parameters introduced in the previous section, the govern-

ing equations listed in Section 3.4 can be transformed in to the dimensionless form.

The solution of steady state single phase contunity equation yields to the inverse
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of the Zuber number, which is one of the important dimensionless numbers in the

stability analysis;

υ∗fin,o =
υfin,o

Ωslh
=

1

NZu

(3.48)

The single phase energy equation in dimensionless form is written as follows:

∂N∗
s

∂t∗
+ υ∗i

∂N∗
s

∂z∗
= −Ω∗

1φ (3.49)

where Ω∗
1φ is written in terms of the wall heat flux in the single phase heated section

as follow:

Ω∗
1φ =

q′′1φξh

Ah∆ifg

∆ρ

ρfρg

1

Ωs

For the solution of the single-phase energy equation in Eq. (3.49), the dimensionless

boundary condition must be introduced at the channel inlet as

N∗
s(0, t

∗) = Nsin(t∗) =
ifs − ifin(t∗)

∆ifg

∆ρ

ρg

(3.50)

In order to locate the boiling boundary, the departure enthalpy is introduced. The

departure enthalpy given by Eq. (3.25) can be made dimensionless as follows:

N∗
sd =





0.0022
D∗

e

ξ∗h

1

a∗f
NPe < 70000

154

(ξhlh)∗
1

υ∗fin

NPe > 70000

(3.51)

where a∗f =
kf

ρfcpf

1

ΩsAh

is the dimensionless liquid diffusivity, (ξhlh)
∗ =

ξhlh
Ah

is the

dimensionless heat transfer area.

The dimensionless single-phase momentum equation takes the following form,

−dP∗

dz∗
=

dυ∗fin

dt∗
+ Nfυ

∗2
i +

N−1
Fr

N2
Zu

sin(θ) +
1

2
Kiυ

∗2
finδ(z∗) (3.52)
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where ,Nf =
f1φlh
2De

, is the friction number, and NFr =
υ2

fin,o

glh
is the Froude number.

In the two-phase mixture region, the mixture volumetric flux equation reduces

to the following form
∂j∗

∂z∗
= Ω∗

2φ (3.53)

where Ω∗
2φ is the dimensionless reaction frequency in the two-phse mixture region

written in terms of the wall heat flux in this region. Based on the solution of this

equation, the kinematic wave velocity in dimensionless form becomes

C∗
k = Coj

∗ +
Nd

NZu

(3.54)

where Nd =
〈〈υgj〉〉
υfin,o

is the drift number.

The dimensionless density wave equation in terms of the modified density is

written as follows:
∂ρ+∗

m

∂t∗
+ C∗

k

∂ρ+∗
m

∂z∗
= −CoCgΩ

∗
2φ (3.55)

The boundary condition for the density wave equation simply becomes ρ+∗
m (λ∗, t∗) = 1.

The dimensionless mixture momentum equation can be obtained by using the

scaling parameter given in Table (3.1) from Eq. (3.43):

−dP∗

dz∗
= ρ∗m

∂υ∗m
∂t∗

+ ρ∗mυ∗m
∂υ∗m
∂z∗

+ CmNfρ
∗
mυ∗2m +

N−1
Fr

N2
Zu

ρ∗m sin(θ) (3.56)

+
∂

∂z∗

[
1− ρ∗m

ρ∗m

Nρ

ρ∗m − Nρ

υ∗2gj

]
+

1

2
Keρ

∗
mυ∗2m δ(z∗ − 1)

The dimensionless mixture velocity which is needed to integrate the momentum equa-

tion can be obtained via the following equation:

υ∗m =
ρ+∗

m

ρ∗m
j∗ − 1− ρ∗m

ρ∗m

Nd

NZu

(3.57)
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3.5.2 Dimensionless Numbers

In the previous section, the dimensionless form of the field equations have been

obtained based on the given scaling variables. In this section, the definition and

the physical significance of the dimensionless numbers appearing in the dimensionless

equations are examined.

◦ Subcooling Number: The subcooling number appears as a boundary condition for

the single-phase energy equation and incorporates the efffect of the inlet subcooling

into the analysis. As will be discussed later, it also quantifies the delay due to the

propagation of the enthalpy wave in the single phase heated section

Nsub =
∆isub

∆ifg

∆ρ

ρg

(3.58)

◦ Zuber Number: The Zuber number, or the phase change number, is another im-

portant dimensionless number in the stability analysis. It scales the phase change

due to the heat addition. Along with the subcooling number, it shows the thermo-

dynamic state within the channel. It is defined as follows:

NZu =
Q

ṁ∆ifg

=
Ωslh
υfin,o

(3.59)

where Q is the total heat input to the flow, and ṁ is the mass flow rate through

the channel.

◦ Froude Number: In the momentum equations given by Eqs. (3.52) and (3.56),

the Froude number appears in the gravity term. It is the ratio of the inertia

and gravity forces. The inverse of the Froude number scales the gravity and is

the important scaling parameter in the natural circulation systems where flow is

induced by gravity. The Froude number is defined as

NFr =
υ2

fin,o

gH
(3.60)
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◦ Friction Number: It demonstrates relative effect of the friction in the momentum

equation.

Nf =
f1φHh

2De

(3.61)

where f1φ is the single-phase friction factor which depends on the Reynold number:

f1φ = CNm
Re (3.62)

In turbulent flow, m = −0.25 and C = 0.184. Since the constant multiplier is used

for the two-phase friction factor,fm, the friction number also scales the frictional

forces in two-phase mixture region.

◦ Density Ratio Number: The density ratio number defined by Eq. (3.63) scales the

system pressure. The density ratio number appears in the constitutive relation for

Co and the drift term in two-phase mixture momentum equation given by Eq. (3.56).

Nρ =
ρg

ρf

(3.63)

This number appears implicitly in the subcooling number and zuber number.

Therefore, the pressure scaling is concealed in these numbers via Nρ.

◦ Drift Number: It represents the relative importance of the mechanical equilibrium

in the two-phase mixture. It is defined in terms of the void-weighted mean velocity,

Nd =
〈〈υgj〉〉
υfin,o

(3.64)

Another parameter effecting the drift is the distribution parameter, Co, which is

already dimensionless. Therefore, along with Co, the drift number reflects the

mechanical non-equilibrium between the phases and the flow regime.

◦ Peclet Number: It appears in the departure enthalpy correlation of Saha-Zuber

model. It is important scaling parameter in the modeling the effect of subcooled
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boiling.

NPe =
Gcpf

kf

(3.65)

◦ Reynolds Number: Reynolds number appears in single-phase friction factor. It is

defined as

NRe =
ρfυfin,oDe

µf

(3.66)

It is the ratio of the inertia and viscous forces, and it has little importance in scaling

issue for the instabilities, since the Reynold number effect on the friction factor is

small for the turbulent flow.

◦ Geometrical Dimensionless Groups: In addition to the dimensionless numbers de-

scribed above, the dimensionless equations include parameters related to geometry

of the system like dimensionless hydraulic diameter, D∗
e =

De

Hh

, inlet-flow-loss coef-

ficient, Kin, exit-flow-loss coefficient, Ke, and sine of the channel orientation angle,

sin(θ).
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4. FUEL HEAT CONDUCTION MODELING

Modeling of the heat conduction process in the nuclear fuel plays an important

role in reactor design and safety analysis. Accurate description of temperature profile

within the fuel element is necessary to predict lifetime of the fuel element and its safety

characteristics. Thermal stress cracking, maximum allowable power rating and many

other aspects of thermal design are directly related to the temperature distribution

inside the fuel element.

The basic aspects of the fuel design described above can be analyzed based on

the steady-state solution of the heat conduction equation in either one dimension

or multi dimensions. However, in most cases, a transient solution of the process is

necessary. Especially, during accident conditions such as LOCA, maximum cladding

temperature depends on the solution of the heat conduction equation (generally in

two dimensions) along with the coolant side conditions.

In the BWR technology, the fuel heat conduction process is important not only

for accidental conditions but also for transients such as nuclear-coupled flow oscilla-

tions. Actually, the process provides the link between the neutronic (heat generation

inside the fuel) and heat transferred to the coolant. The time required for the con-

duction of heat through the fuel element(fuel time constant) plays a central role in

the stability analysis, because it gives the time lag effect between the heat genera-

tion and heat flux to the coolant. Even though BWRs have negative void-reactivity

coefficients, under certain frequencies of oscillations, they might have positive void-

reactivity coefficients in terms of coolant heat flux, which may amplify the oscillations’

amplitude and worsen the instability.

All of the Light Water Reactors (LWRs) have similar fuel element design except

some changes in assembly design, geometry and material. A typical BWR fuel element
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consists of UO2 fuel pellet enclosed within Zircaloy-2 cladding. There is an initial gap

between the pellet and the cladding that is filled with inert helium gas. After a few

days of operation, this gap is closed due to expansion of the pellet and thermal

cracking on the surfaces. In addition, some fission product gases, such as Krypton

and Xenon, escape from the fuel pellet and go to the gap region. The prediction of the

characteristics of the gap conductance is a complex task and empirical correlations

based on extensive experimental database are used.

As will be described in the following sections, an accurate description of the heat

conduction process and the temperature distribution can be determined by solving

the parabolic heat conduction equation. This is basically done by an appropriate

numerical method. In this study, several simplified models are introduced to predict

both the steady-state and transient characteristics of the fuel element temperature.

This study has been performed to construct a tractable model for two-phase flow

instabilities in BWR systems.

Based on the simplified models developed in this study, expressions for the

fuel element time constant are derived. One objective is to appreciate the order of

magnitude of this parameter and to analyze several effects such as the temperature-

dependent conductivity and non-uniform heat generation, etc., in the process. The

other objective is to derive dimensionless groups for the heat conduction process

and examine the effects of the modeling strategy. For the purpose of analysis, the

frequency domain analysis has been performed based on a linearized conduction equa-

tion. Transfer functions have been derived and analyzed for several important links

among processes, namely heat generation, heat conduction, and coolant side effects.

The dimensionless analysis carried out in this chapter yields important dimen-

sionless groups for the wall heat flux simulation. Since the SBWR fuel element has a

fuel time constant larger than that of the electric heater used in the test section of the

experimental loop as described in Chapter 8 , the delay due to the heat conduction

process should be simulated in the facility based on the dimensionless groups derived

for the heat conduction through the fuel element.
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4.1 Heat Conduction in Fuel Element

The temperature distribution within the fuel elements depends on the heat gen-

eration rate, material thermo-physical properties, and coolant conditions. In general,

the heat conduction process is governed by the following solid energy equation:

ρc
∂T

∂t
= ∇ · k(T)∇T(~r, t) + Q′′′(~r, t) (4.1)

where ρc is the volumetric heat capacity of the solid. This equation, which is a

parabolic type, can be solved numerically with given initial and boundary conditions

along with the number of dimensions required for the problem considered. In general,

one-dimensional form is appropriate for adequate description of the phenomenon.

Two important parameters in Eq. (4.1) are the thermal conductivity, k(T), and heat

generation rate, Q′′′(~r, t). In the fuel pellet, because of its low thermal conductivity, a

steep temperature gradient exists. However, the thermal conductivity of UO2 changes

significantly with temperature. Another complexity of the problem is that the heat

generation term depends on space, the fuel temperature and material properties.

The thermal neutron flux distribution determines the rate and spatial distribution

of the heat generation inside the pellet. The heat transfer out of the fuel element

via convection is also a strong function of the coolant side conditions. Therefore, the

process is extremely complex and nonlinear.

A typical BWR fuel element cross section is shown in Figure 4.1. In most cases;

except the reflood calculations in LOCA, the axial conduction is negligible compared

to the heat conduction in radial direction. This is justified by the very small D/L

ratio of the fuel rod. Therefore, the one-dimensional form of Eq. (4.1) can be used,

ρc
∂T

∂t
=

1

r

∂

∂r

(
k(T)r

∂T

∂r

)
+ Q′′′(r, t) (4.2)

Complications due to the temperature-dependent thermal conductivity, com-

plex heat generation term and non-linear boundary conditions make the analytical

solution impossible. However, under certain simplified assumptions, some analytical

4-3



F u e l  P e l l e t
G a p  
C l a d d i n g

R c
R p

Figure 4.1. Typical BWR Fuel Element

expressions can be derived. Before proceeding further, necessary boundary conditions

should be supplied. Even though there are three different zones in a fuel element cross

section, equations are derived for only two regions, namely the fuel pellet (p) and the

cladding (c). As it will be described below, the gap is practically closed after a few

days of operations. As shown in Figure 4.1, protrusions are created especially on the

pellet outer surface, and there are many contact points between the pellet and the

cladding. Thermal expansion coefficient of the fuel pellet and the cladding is also

different. For instance, the coefficient for the fuel pellet is approximately two times

greater than that of the cladding. This is another reason for the gap closure. However,

there is significant temperature drop within this region that should be taken into ac-

count. The amount of temperature drop is determined based on “Gap Heat Transfer

Coefficient (hg)”, which is an experimentally determined parameter and depends on
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the thermal conductivity of gases, size of protrusions, burnup level, etc. This region

is taken into account as thermal contact resistance. Applicable boundary conditions

are given in Eq. (4.3) as

∂T

∂r

)

r=0

= 0 (4.3)

−kp
∂T

∂r

)

r=R−p

= hg

(
T(R−

p )− T(R+
p )

)
= hg∆Tg

−kc
∂T

∂r

)

r=Rc

= h∞
(
T(Rc)− T∞

)

where kp and kc are the thermal conductivity of the pellet and clad, respectively; h∞

denotes the coolant heat transfer coefficient, and T∞ is the bulk coolant temperature.

T(R−
p ) represents the temperature on the pellet outer surface, and T(R+

p ) represents

the clad inner surface temperature. Therefore, ∆Tg = T(R−
p ) − T(R+

p ) is the tem-

perature drop across the gap region. The first boundary condition given by Eq. (4.3)

is for centerline symmetry of temperature at the pellet center. The second boundary

condition is for the gap temperature drop and the last one accounts for convective

boundary condition at the cladding wall, which requires the coolant side temperature,

T∞ and heat transfer coefficient, h∞. However, in addition to the boundary condi-

tions, the heat generation term in Eq. (4.2) should also be given for the solution. For

the purpose of this analysis, time and space separability is assumed to specify the

heat generation term. As it will be described in Chapter 5, this assumption is the

starting point of the derivation of the Point Kinetic Model (PKM). By considering

the radial power shape inside the fuel pellet, the following equation is used to describe

position- and time-dependent volumetric heat generation term:

Q′′′(r, t) = 〈Q′′′
o 〉n(t)φ(r) (4.4)

where 〈Q′′′
o 〉 is the area-averaged volumetric heat generation rate at steady-state, n(t)
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is the neutron amplitude function, which can be determined from the PKM equations,

and φ(r) is the shape function that characterizes the spatial distribution of the thermal

neutrons inside the pellet. In this analysis, the power shape is normalized such that,

2

R2
p

∫ Rp

0

φ(r)rdr = 1 .

Therefore, the area-averaged volumetric heat generation under steady-state conditions

can be determined from the following equation:

〈Q′′′
o 〉 =

∫ Rp

0
Q′′′

o (r)rdr
∫ Rp

0
φ(r)rdr

. (4.5)

The amount of heat generation and its spatial distribution depend on the ther-

mal neutron flux. The neutron flux, in turn, depends on the fuel composition, tem-

perature, and coolant density. As far as the spatial power shape within the fuel pellet

is concerned, a parameter called “Flux Depression Factor”, denoted by ζ, determines

the effect of the power profile tilting inside the pellet. The thermal neutron flux is

higher inside the coolant and lower inside the pellet. This is because of the fact that

neutrons are generated inside the fuel as fast neutrons and they are thermalized in the

moderator/coolant region. Therefore, the thermal neutrons, which cause most part

of the fission, enter the fuel from the moderator side. Since both U235 and U238 atoms

have high absorption cross sections, more of the thermal neutrons are absorbed at the

periphery of the fuel pellet. This effect causes the inner region of the fuel pellet to

be shielded against thermal neutrons. Therefore, because of this self-shielding effect,

the power generation in the pellet is higher at the periphery. The non-uniform power

shape changes the time lag characteristics of the fuel heat conduction and causes the

fuel time constant of the fuel element smaller than that of the uniform power profile

case.

For the purpose of this study, a parabolic power shape is considered for the

radial power shape, φ(r) to account for the self-shielding effect. The power profile is
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given by

φ(r) = 1 +

[( r

Rp

)2

− 1

2

]
f , (4.6)

where f is an adjustable parameter to account for the effect of the flux depression

factor, ζ, which is defined as the ratio of the power generation at the pellet periphery

and pellet center:

ζ =
φ(0)

φ(Rp)
(4.7)

Therefore, the parameter, f , can be written as a function of the flux depression factor

as

f =
2(1− ζ)

1 + ζ
(4.8)

The flux depression factor is characterized by the neutron flux distribution inside the

fuel pellet. It can be calculated via a neutron transport code for a given cell geometry

and composition profile.

4.2 Steady-state Temperature Distribution and Thermal Resistances

The steady-state temperature distribution inside the fuel element is determined

with given boundary conditions. Thermal resistances in different zones of the fuel

element are derived based on the solution of the steady-state heat conduction equa-

tion given by Eq. (4.2). In the derivation of the thermal resistance expressions and

the simplified models used for the fuel heat conduction, area-averaging over the fuel

pellet and cladding is performed. Therefore, the problem is formulated based on two

different regions, namely fuel pellet and cladding. For the fuel pellet, power profile-

weighted area-averaging is employed to accommodate the effect of the power profile

on the fuel time constant. The power profile-weighted area-averaged temperature for

the fuel pellet is given as follows:

〈〈T〉〉p , 〈T(r)φ(r)〉p
〈φ(r)〉 =

2

R2
p

∫ Rp

0

T(r)φ(r)rdr (4.9)
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〈〈T〉〉p ! T(R−
p ) ! T(R+

p ) ! 〈T〉c ! T(Rc) ! T∞

Figure 4.2. Heat Conduction Network for the Fuel Element based on
Averaged Temperatures

Similar to Eq. (4.9), the average clad temperature is defined as

〈T〉c =
1

Ac

∫∫

Ak

T(r)dA =
2

R2
c −R2

p

∫ Rc

Rp

T(r)rdr (4.10)

In the following sections, the steady-state temperature distribution for each region

(pellet and clad) and thermal resistances are derived. The heat transfer network

shown in Figure 4.2 is the basic scheme in the derivation of the resistances and the

simplified models for the fuel heat conduction.

4.2.1 Pellet Region

The steady-state form of Eq. (4.2) can be solved for the pellet by introducing

the pellet outer surface temperature, T(R−
p ), as a boundary condition. By considering

the temperature-dependent thermal conductivity of UO2, the following equation can

be written for the general solution of the steady-state temperature distribution inside

the pellet: ∫ T(r)

T(R−p )

k(T)dT = 〈Q′′′〉R2
p

[
1− r′2

4
−

(
r′2 − 1

4

)2

f

]
(4.11)

where r′ =
r

Rp

. The integral on the left-hand-side of Eq. (4.11) is called “Conductivity

Integral” and can be evaluated with a given “k(T)”. The thermal conductivity of

the UO2 pellet shown in Figure 4.3 is given by a correlation based on extensive

database [37]. As seen from the figure, the pellet thermal conductivity is a strong

function of the temperature. However, the pellet thermal conductivity depends on

many other factors besides temperature, such as irradiation due to composition change

and porosity [38].
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Figure 4.3. Thermal Conductivity of UO2 Pellet
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The temperature distribution given by Eq. (4.11) requires an iterative process.

For simplicity, an averaged value for the pellet thermal conductivity is used. Based

on the minimum and maximum temperature inside the pellet during the transient,

Tmin, Tmax, following equation can be written for the average thermal conductivity

of the pellet,

kp =
1

Tmax − Tmin

∫ Tmax

Tmin

k(T)dT (4.12)

By introducing the averaged-thermal conductivity of the pellet, following equa-

tion for the pellet steady-state temperature distribution can be written from Eq. (4.11),

Tp(r) = T(R−
p ) +

〈Q′〉
πkp

[
1− r′2

4
−

(
r′2 − 1

4

)2

f

]
(4.13)

where 〈Q′〉 = πR2
p〈Q′′′〉 is the area-average linear heat rate for the fuel element. By

using the definition of power profile-weighted area-averaging given by Eq. (4.9), the

average temperature drop across the fuel pellet is given as follows,

〈〈T〉〉p − T(R−
p ) = 〈Q′〉f

2 − 8f + 24

192πkp

(4.14)

The conductive thermal resistance for the fuel pellet, R′
1, based on the average tem-

perature drop given by Eq. (4.14) can be written as follows

R′
1 , f2 − 8f + 24

192πkp

(4.15)

In general, the thermal resistance, R′, is defined as follows

R′ =
∆T

〈Q′〉 (4.16)

which is given in terms of the linear heat rate. Therefore, R′ has unit
m◦K
W

.
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4.2.2 Gap and Cladding Regions

As described in Section 4.1, the gap region is practically closed after few days

of operation. Therefore, it is reasonable to treat this region as a contact thermal

resistance given in terms of gap heat transfer coefficient, hg. The determination of the

gap heat transfer coefficient is quite complicated and difficult to develop an analytical

model. The current approach for the gap conductance problem is to treat the gap

conductance as a contact resistance between two solids (pellet and clad) including

the effect of protrusions, fission gas release rate and its content. The detailed analysis

for the gap conductance is given by Ref. [39, 40]. In the current study, the value of

5700 W/m2K for the gap heat transfer coefficient is used as recommended for design

calculations [41].

As shown in Eqs. (4.3), the linear heat rate can be written in terms of gap

heat transfer coefficient, hg, and gap temperature drop, ∆Tg = (T(R−
p )− T(R+

p )) as

follows,

〈Q′〉 = 2πRphg(T(R−
p )− T(R+

p )) . (4.17)

From the definition of the thermal resistance given by Eq. (4.16), the gap region

thermal resistance, R′
2 is given by

R′
2 , 1

2πRphg

. (4.18)

The steady-state heat conduction equation for the cladding can be obtained by

dropping the heat generation term in Eq. (4.2). During normal operation, certain

amount of heat is also deposited inside the cladding due to the γ-ray attenuation,

however this is negligible compared to the heat generation inside the pellet, therefore,

it is simply neglected.

As shown in Figure 4.2, two separate thermal resistance expressions are derived

for the cladding. This can be achieved by solving the conduction equation with

the clad inner surface temperature, T(R+
p ), and the clad outer surface temperature,

T(Rc), as boundary conditions. Therefore, two different forms of the clad temperature
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Figure 4.4. Thermal Conductivity of Zr2 Cladding

distribution are derived. By means of clad inner surface temperature as a boundary

condition, the following equation is written for the clad,

Tc(r) = T(R+
p )− 〈Q′〉

2πkc

ln

(
r

Rp

)
(4.19)

where kc is the average thermal conductivity of the clad. The effect of temperature on

the thermal conductivity should also be considered for Zircaloy-2. However, the effect

is not as significant as that in UO2 thermal conductivity. The linear dependency can

be easily assumed as can be seen from Figure 4.4. The correlation for the Zircaloy-2

thermal conductivity used in the figure was developed by Scott [42].
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The average temperature drop, T(R+
p )−〈T〉c, in the clad can be determined by

applying area averaging defined via Eq. (4.10). The thermal resistance corresponding

to the temperature drop, T(R+
p ) − 〈T〉c, can be written by means of Eq. (4.16) as

follows,

R′
3 , 1

2πkc

[
R2

c

R2
c −R2

p

ln

(
Rc

Rp

)
1

2

]
(4.20)

The temperature profile can also be determined by introducing the boundary

condition on the clad outer surface. Therefore, by using the clad outer surface tem-

perature (wall temperature), T(Rc), the distribution is given as

Tc(r) = T(Rc) +
〈Q′〉
2πkc

ln

(
Rc

r

)
(4.21)

The second thermal resistance of the clad for the temperature drop, 〈T〉c −T(Rc), is

determined after area-averaging and by using the definition of the thermal resistance

as follows,

R′
4 , 1

2πkc

[
1

2
− R2

p

R2
c −R2

p

ln

(
Rc

Rp

)]
(4.22)

4.2.3 Convective Resistance of the Coolant

Based on the temperature difference between the clad outer surface tempera-

ture, T(Rc), and the bulk coolant temperature, T∞, the resistance for the convective

heat transfer between the clad and coolant is given by

R′
5 , 1

2πRch∞
(4.23)

where h∞ is the heat transfer coefficient of the coolant. Since its functional depen-

dency on flow conditions differs depending on whether the flow is single phase or

two-phase, two different flow conditions should be examined separately.

In the single phase flow, the heat transfer coefficient is written as a function

of the Reynolds and Prandtl numbers. Neglecting the pressure dependency on the

flow conditions, the heat transfer coefficient in single phase flow, h1φ, is written as a
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Table 4.1. Coefficient of Eq. (4.27) for Different Correlations

κ(P)(106) m

Jens and Lottes
exp(4P/6.2)

254
3

Thom
exp(2P/8.7)

22.74
1

function of liquid velocity through the Reynolds number. The Reynolds number is

defined as

NRe , ρfυfDe

µf

(4.24)

where ρf and µf are the liquid density and viscosity, respectively. υf is the liq-

uid velocity and De is the equivalent hydraulic diameter of the flow channel. The

heat transfer coefficient in single phase flow can be determined from Dittus-Boelter

correlation [43],

h1φ = 0.023
kf

Dh

N0.8
ReN

0.4
Pr (4.25)

where kf is the liquid thermal conductivity and Dh is the heated diameter calculated

based on heated perimeter of the heated channel. NPr is the Prandtl number given

by

NPr , νf

af

(4.26)

where νf and af are the momentum and thermal diffusivity of the liquid, respectively.

In two-phase flow, the heat transfer coefficient is determined based on given heat

transfer regime. In general, nucleate boiling heat transfer dominates. The general

form of the heat transfer coefficient is given as a function of pressure,P, and wall
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superheat, ∆Tw = T(Rc)− Ts, as

h2φ = κ(P)∆Tm
w (4.27)

The saturation temperature,Ts, at given pressure is considered as the bulk coolant

temperature in the two-phase flow.

For the purpose of the analysis, two correlations for the nucleate boiling are

highlighted: Jens and Lottes [44] and Thom [45] correlations. Table 4.1 summarizes

the coefficients of Eq. (4.27) for those two correlations.

4.3 Simplified Models for Fuel Heat Conduction

In this section, simplified models for predicting the transient behavior of the

fuel heat conduction process are derived. The partial differential equations given

by Eq. (4.2) is transformed into two ordinary differential equations for the pellet

and cladding regions by introducing the area averaging over each region of the fuel

element. Two alternative models are presented in this study: One is “Double-Node

Lumped Model”, which considers the fuel pellet and clad separately; While the other

method, called “Single-Node Lumped Model”, is the result of lumping the pellet and

cladding regions into one, which is called “fuel element”.

As shown in Figure 4.2, there are five thermal resistances along the heat flow

path. Since ordinary differential equations are written for power profile-weighted

area-averaged pellet temperature and area-averaged clad temperature, two separate

heat conductances are defined:

U′
pc , Nrod

R′
1 + R′

2 + R′
3

(4.28)

which considers the heat flow from the fuel pellet to the clad. The conductance from

the cladding to the coolant is given by

U′
c∞ , Nrod

R′
4 + R′

5

(4.29)
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where Nrod is the number of fuel rods in the reactor core. R′
1 is the pellet resistance

(Eq. (4.15)); R′
2 is the gap resistance (Eq. (4.18)); R′

3 is the resistance of the inside half

of the cladding (Eq. (4.20)); R′
4 is the resistance for the outside half of the cladding

(Eq. (4.22)); and R′
5 is the convective resistance of the coolant (Eq. (4.23)).

4.3.1 Double-Node Lumped Model

The one-dimensional form of the heat conduction equation given by Eq. (4.2)

can be integrated over each region to obtain the coupled ordinary differential equations

for the fuel pellet and the clad. The following equations can be obtained for the

double-node lumped model: The pellet region:

〈ρc〉pAp
d〈〈T〉〉p

dt
= 〈Q′

o〉n(t)− U′
pc

(
〈〈T〉〉p − 〈T〉c

)
(4.30a)

and the cladding region:

〈ρc〉cAc
d〈T〉c

dt
= U′

pc

(
〈〈T〉〉p − 〈T〉c

)
− U′

c∞
(
〈T〉c − T∞

)
(4.30b)

where 〈ρc〉p and 〈ρc〉c are the volumetric heat capacity of the pellet and clad, re-

spectively. Ap = NrodπR2
p is the total fuel pellet cross sectional area, and Ac =

Nrodπ(R2
c − R2

p) is the total clad cross sectional area. Equations (4.30a) and (4.30b)

are integral energy balance equations inside each region, considering energy produc-

tion, transfer and storage terms. Since they are ordinary differential equations in

time domain, the solution requires initial temperatures for each region. The initial

conditions are given as

〈〈T〉〉p,o = T∞,o + 〈Q′
o〉

U′
pc + U′

c∞
U′

pcU
′
c∞

(4.31a)

〈T〉c,o = T∞,o +
〈Q′

o〉
U′

c∞
(4.31b)
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4.3.2 Single-Node Lumped Model

Single-node lumped model can be obtained by integrating the energy equa-

tion over the entire cross-sectional area of the fuel element, including the pellet

and cladding. The area-averaged fuel element temperature for which the single-node

lumped model is derived is written in terms of power profile-weighted area-averaged

pellet temperature, 〈〈T〉〉p, and area-averaged clad temperature, 〈T〉c:

〈T〉fe =
Ap

Afe

〈〈T〉〉p +
Ac

Afe

〈T〉c (4.32)

where Afe = Ap +Ac = NrodπR2
c is the total fuel element cross sectional area. There-

fore, the differential equation for the area-averaged fuel element temperature is written

as follows:

〈ρc〉feAfe
d〈T〉fe

dt
= 〈Q′

o〉n(t)− U′
(
〈T〉fe − T∞

)
(4.33)

where U′ is the overall heat conductance which is derived based on the area averaging

as follows,

U′ =
Nrod

Ap

Afe

(
R′

1 + R′
2 + R′

3

)
+ R′

4 + R′
5

(4.34)

The area-averaged volumetric heat capacity of the fuel element, 〈ρc〉fe, is given as,

〈ρc〉fe =
〈ρc〉pAp + 〈ρc〉cAc

Ap + Ac

(4.35)

The initial condition required for the solution of Eq. (4.33) is given as follows:

〈T〉fe,o = T∞,o +
Q′

o

U′ . (4.36)

4-17



4.4 Fuel Heat Conduction Time Constant

The conduction of the heat across the fuel element requires a certain amount

of time which is characterized by a time constant. A typical BWR fuel element has

the time constant of four to six seconds. The time constant is one of the fundamental

parameter in the stability analysis of the nuclear-coupled density wave oscillations.

Depending on the frequency of the flow oscillations, the oscillations in the void and

the heat flux may be in-phase, which results in positive void coefficient in terms of

heat flux to the coolant.

In this section, based on the developed models in Section 4.3, expressions for

the fuel time constant of a typical fuel element are derived.

By using the double-node lumped model, Eqs. (4.30a) and (4.30b) can be writ-

ten in matrix-vector form as

d

dt

(
~〈T〉

)
= A ~〈T〉+~b, (4.37)

where vector ~〈T〉 = [〈〈T〉〉p 〈T〉c]T . The matrix A, which is used for the time con-

stant determination, is written as

A =




−
U′

pc

〈ρc〉pAp

U′
pc

〈ρc〉pAp

U′
pc

〈ρc〉cAc

−
U′

pc + U′
c∞

〈ρc〉cAc




. (4.38)

Transient characteristics of the conduction process can be determined by ana-

lyzing the eigenvalues of the matrix in Eq. (4.37) . The characteristic equation of this

matrix is a second order polynomial, which is written as

p(λ) = det(A− λI) = λ2 + p1λ + p2 = 0, (4.39)
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where the coefficients are

p1 =
U′

pc

〈ρc〉pAp

+
U′

pc + U′
c∞

〈ρc〉cAc

(4.40a)

and

p2 =
U′

pcU
′
c∞

〈ρc〉cAc〈ρc〉pAp

(4.40b)

As can be seen from Eqs. (4.40), both coefficients (p1 and p2) are positive.

Therefore, the roots of Eq. (4.39) have the same signs. In addition, the discriminant,

∆ = p2
1 − 4p2, is always greater than zero, assuring that the following two roots are

real:

λ1 = −
p1

2

[
1 +

(
1−

4p2

p2
1

)1/2]
(4.41a)

λ2 =
p1

2

[(
1−

4p2

p2
1

)1/2

− 1

]
(4.41b)

The second root that is the smallest in magnitude determines the transient charac-

teristics dominantly. Therefore, the fuel time constant is the inverse of the second

root, given by

τF =
2

p1

[(
1−

4p2

p2
1

)1/2

− 1

]. (4.42)

The second approach for determining the fuel time constant is to derive expres-

sions from the single-node lumped model. From the ordinary differential equation

written for the average fuel element temperature, the fuel time constant expression

becomes

τF =

(
〈ρc〉pAp + 〈ρc〉cAc

)
( Ap

Afe

)
U′

c∞ + U′
pc

U′
pcU

′
c∞

. (4.43)
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4.5 Dimensional Analysis and Transfer Functions for Fuel Heat Conduc-

tion

In the previous sections, the simplified models for the fuel heat conduction pro-

cess in a typical BWR fuel element have been derived. Applying area averaging to the

one-dimensional heat conduction equation in cylindrical geometry, two ordinary dif-

ferential equations are derived for the power profile-weighted area-averaged fuel pellet

temperature and area-averaged clad temperature. The model is further simplified by

lumping the pellet and cladding region into one single region.

In this section, a detailed dimensional analysis is performed. By introducing ap-

propriate form of the scaling variables, the model equations are non-dimensionalized.

The problem is transformed into frequency domain by linearizing and applying Laplace

transformation on Eq. (4.33). The frequency domain analysis provides the transfer

functions that link the heat generation and wall heat flux. Based on the derived trans-

fer function for the fuel heat conduction process, several dimensionless numbers are

emphasized for the modeling of heat conduction delay in the void-reactivity feedback

simulation experiments.

4.5.1 Scaling Variables and Dimensionless Conduction Equations

Essence of dimensional analysis is based on the definition of appropriate scaling

variables. The scaling variables are chosen in such a way that they are consistent

with the flow-field dimensionless analysis described in Ref. [46]. The following list

describes the scaling variables for each dimension appearing in the model formulation:

I. Time: Inverse of the reaction frequency in saturated two-phase flow, Ωo, is cho-

sen for time scale. The reaction frequency at steady-state conditions is defined

as

Ωo =
〈Q′

o〉
A∆ifg

∆ρ

ρfρg

(4.44)
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where

〈Q′
o〉 , Linear heat rate at steady-state [W/m]

∆ρ , Density difference between liquid and vapor at saturation [kg/m3]

A , Channel Flow Area [m2]

∆ifg , Latent heat of vaporization [J/kg]

Ωo , Reaction Frequency at steady-state [1/sec]

Therefore, the dimensionless time is defined as

t∗ = tΩo (4.45)

The dimensionless fuel time constant determined from the single-node lumped

model is written as

τ ∗F =
〈ρc〉feAfe

U′ Ωo (4.46)

The term
U′

〈ρc〉fe

, denoted by afe is considered as pseudo thermal diffusivity

which is the integral quantity of the fuel element. Similarly, pseudo thermal

diffusivity for the pellet and cladding can be written as follows,

ap =
U′

pc

〈ρc〉p ac =
U′

c∞
〈ρc〉c (4.47)

II. Area: The transverse length scale is lost due to the area-averaging in the radial

direction. The area scale is chosen to be the channel flow area as it is consistent

with flow field scaling. Therefore, the dimensionless cross sectional area of the

pellet and cladding becomes,

A∗
p =

Ap

A
A∗

c =
Ac

A
(4.48)

where subscripts p and c stand for the pellet and cladding regions, respectively.
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III. Volumetric Heat Capacity: The volumetric heat capacity of each region is scaled

by the saturated liquid heat capacity, ρfcpf :

〈ρc〉∗p =
〈ρc〉p
ρfcpf

〈ρc〉∗c =
〈ρc〉c
ρfcpf

(4.49)

IV. Reaction Frequency: The reaction frequency, Ω, depends on whether the flow is

single phase or two-phase. The transient reaction frequency for the single phase

and two-phase flows is defined in terms of the linear heat rate, 〈Q′〉, in each flow

region as follows:

Ω1φ =
〈Q′

1φ〉
A∆ifg

∆ρ

ρfρg

Ω2φ =
〈Q′

2φ〉
A∆ifg

∆ρ

ρfρg

(4.50)

The linear heat rate in each flow conditions is written as follows,

〈Q′〉 = U′
c∞

(
〈T〉c − T∞

)
(4.51)

where the heat conductance, U′
c∞, and the bulk coolant temperature T∞ change

depending on the flow condition as described in Section 4.2.3. Equation (4.51)

is written based on the area-averaged clad temperature. However, a similar

expression can be written based on the single-node lumped model by replacing

U′
c∞ with U′ and 〈T〉c with 〈T〉fe. It is important to note that U′

c∞ and U′

are both a function of the heat transfer coefficient of the coolant, h∞, which is

time dependent. Based on the definitions given by Eq. (4.50), the dimensionless

transient reaction frequency for each phase is given by

Ω∗
1φ =

Ω1φ

Ωo

Ω∗
2φ =

Ω2φ

Ωo

(4.52)

V. Temperature: The dimensionless temperature for the pellet and cladding is de-
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fined as follows,

θ∗p ,
cpf

(
〈〈T〉〉p − Ts

)

∆ifg

∆ρ

ρg

θ∗c ,
cpf

(
〈T〉c − Ts

)

∆ifg

∆ρ

ρg

(4.53)

where Ts is the saturation temperature of the coolant at a given system pressure.

The definition of the dimensionless temperatures given in Eq. (4.53) is similar to

the dimensionless liquid enthalpy in single phase flow in flow field scaling [46].

From the definition of the dimensionless liquid enthalpy in single phase flow, the

dimensionless temperature for the bulk coolant temperature is given by

θ∗∞ ,
cpf

(
Ts − T∞

)

∆ifg

∆ρ

ρg

(4.54)

As seen from Eqs. (4.53) and (4.54), the dimensionless temperatures are all

positive quantities. In two-phase flow section of the channel, θ∗∞ becomes zero

since bulk coolant temperature is the same as the saturation temperature.

Based on the scaling variables defined above, the dimensionless fuel pellet and

cladding equations are written as

dθ∗p
dt∗

=
n(t∗)
〈ρc〉∗pA∗

p

− a∗p
(
θ∗p − θ∗c

)
(4.55a)

dθ∗c
dt∗

= a∗p
〈ρc〉∗pA∗

p

〈ρc〉∗cA∗
c

(
θ∗p − θ∗c

)
− a∗c

(
θ∗c + θ∗∞

)
(4.55b)

where a∗p and a∗c are the dimensionless pseudo thermal diffusivity of the pellet and

cladding, respectively. Another dimensionless equation is written for the single-node

lumped model as follows:

dθ∗fe

dt∗
=

n(t∗)
〈ρc〉∗feA

∗
fe

− a∗fe

(
θ∗fe + θ∗∞

)
(4.56)
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4.5.2 Frequency Domain Analysis: Transfer Functions

In this section, the problem derived in time domain in the previous sections is

transformed into frequency domain by linearizing Eq. (4.56) and then applying the

Laplace transformation to it. The transfer functions between coolant power and the

heat generation inside the pellet are derived by considering the single and two-phase

flow conditions in the channel.

The initial condition for Eq. (4.56) is given as

θ∗fe,o =
1

NFo〈ρc〉∗feA
∗
fe

− θ∗∞,o (4.57)

where NFo is the Fourier number defined as

NFo , U′
o

〈ρc〉feAfe

1

Ωo

(4.58)

which is the dimensionless fuel element thermal diffusivity at steady state. Since

the heat conductance, U′
o, depends on the flow conditions, the Fourier number is

defined for single and two-phase flow sections of the channel, separately. The Fourier

number is the ratio of the heat transferred to the heat stored in the fuel element

and a measure of the conduction time lag. Therefore, it is one of the important

dimensionless numbers of the fuel heat conduction process.

In single phase flow, the heat transfer coefficient, h1φ, can be written as a func-

tion of liquid velocity after neglecting the pressure dependency. From Dittus-Boelter

correlation [43], the following equation is written for the heat transfer coefficient in

terms of dimensionless liquid velocity,

h1φ

h1φ,o

=
(
NZuυ

∗
f

)0.8
(4.59)

where υ∗f =
υf

Ωlh
is the dimensionless liquid velocity in single phase flow. NZu is the
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Zuber or Phase Change Number defined as

NZu , Ωolh
υf,o

=
〈Q′

o〉lh
A∆ifgυf,oρf

∆ρ

ρg

(4.60)

where lh is the channel heated length. As described in Ref. [46], the Zuber number

is one of the important dimensionless numbers in fluid flow field scaling. h1φ,o in

Eq. (4.59) is the heat transfer coefficient in single phase flow computed from the

liquid velocity at the steady-state condition.

In two-phase flow, as described in Section 4.2.3, the heat transfer coefficient,

h2φ, depends on wall superheat, ∆Tw =
(
T(Rc)−Ts

)
. However, the model equation

is written in terms of area-averaged temperature. Therefore, the functional form of

the heat transfer coefficient in the two-phase flow should be adjusted from Eq. (4.27)

and resistance network shown in Figure 4.2. The following equation can be written

for the heat transfer coefficient in the two-phase flow by neglecting the pressure effect:

h2φ

h2φ,o

=

(
θ∗fe

θ∗fe,o

) m

m + 1
(4.61)

where the coefficient, m, is given in Table 4.1. In the formulation of Eq. (4.61), the

convective resistance, R′
5, is assumed small compared to other conductive thermal

resistances in the fuel pellet and cladding. This is a reasonable assumption especially

for the two-phase flow since the two-phase flow associates with higher heat transfer

coefficients.

In the following two sections, the transfer functions between coolant power

(reaction frequency) and heat generation inside the fuel pellet (neutron amplitude

function) are derived for both single and two-phase sections of the flow channel.

The linearization procedure can be viewed as a first order Taylor expansion

of a function. Let f be a function of parameters x1, x2, x3, . . . , xn. The first order
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perturbation on the independent variables, xi, yields perturbation in f as

δf =
∂f

∂x1

δx1 +
∂f

∂x2

δx2 + . . . +
∂f

∂xn

δxn (4.62)

where partial derivatives are evaluated at stationary state.

4.5.2.1 Single Phase Flow

The dimensionless thermal diffusivity in Eq. (4.56), which is a function of the

liquid velocity, can be perturbed and Laplace-transformed to yield

δa∗fe(s
∗) = 0.8

NFo,1φ

NBi,1φ

NZuδυ
∗
f (s

∗) (4.63)

where NBi,1φ is the Biot number for the single phase flow defined as follows,

NBi,1φ , 2πNrodRch1φ,o

U′
o

(4.64)

The Biot number represents the ratio of convective conductance, 2πNrodRch1φ,o, to

the total conductance, U′
o. NFo,1φ is the Fourier number in the single phase flow

calculated by means of the heat transfer coefficient, h1φ,o from Eq. (4.58).

The reaction frequency in the single phase flow is written as

Ω∗
1φ = a∗fe〈ρc〉∗feA

∗
fe

(
θ∗fe + θ∗∞

)
(4.65)

By linearizing Eqs. (4.56) and (4.65), and applying the Laplace transformation, the

following transfer function for the reaction frequency in the single phase flow can be

derived,

δΩ∗
1φ(s∗) =

NFo,1φ

s∗ + NFo,1φ

δn(s∗) + 〈ρc〉∗feA
∗
fe

NFo,1φs
∗

s∗ + NFo,1φ

δθ∗∞(s∗) (4.66)

+ 0.8
NZu

NBi,1φ

s∗

s∗ + NFo,1φ

δυ∗f (s
∗)
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where s∗ =
s

Ωo

is the dimensionless frequency.

4.5.2.2 Two-phase Flow

In two-phase flow section of the channel, the dimensionless fuel element equation

reduces to
dθ∗fe

dt∗
=

n(t∗)
〈ρc〉∗feA

∗
fe

− a∗feθ
∗
fe (4.67)

where the dimensionless thermal diffusivity, a∗fe, depends on the dimensionless fuel

element temperature, θ∗fe through Eq. (4.61). Applying first order perturbation and

the Laplace transformation, the following expression is obtained,

δa∗fe(s
∗) =

NFo,2φ

NBi,2φ

m

m + 1
δθ∗fe(s

∗) (4.68)

where NFo,2φ and NBi,2φ are Fourier and Biot numbers in two-phase flow computed

by means of heat transfer coefficient, h2φ,o.

The dimensionless reaction frequency in the two-phase flow is written as

Ω∗
2φ = a∗fe〈ρc〉∗feA

∗
feθ

∗
fe (4.69)

By linearizing Eqs. (4.67) and (4.69) and applying the Laplace transformation, the

following transfer function for the reaction frequency in the two-phase flow can be

obtained:

Ω∗
2φ(s∗) =

NFo,2φ +
m

m + 1

1

〈ρc〉∗feA
∗
feNBi,2φ

s∗ + NFo,2φ +
m

m + 1

1

〈ρc〉∗feA
∗
feNBi,2φ

(4.70)

Equation (4.70) can be further simplified if one assumes

NFo,2φ � m

m + 1

1

NBi,2φ〈ρc〉∗feA
∗
fe

(4.71)
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to the following form:

δΩ∗
2φ(s

∗) =
NFo,2φ

s∗ + NFo,2φ

δn(s∗) (4.72)

As seen from Eqs. (4.66) and (4.72), the Fourier number is the most important

dimensionless number for fuel heat conduction time delay, which characterizes the

time lag between the generation inside the pellet (δn(s∗)) and the heat transferred

to the coolant (Ω∗
1φ(s

∗), Ω∗
2φ(s∗)). The transfer function between Ω∗1φ, Ω∗

2φ and n

is simply a first order time delay and has quite similar characteristics compared to

RC-circuits which are used in signal processing in electronics. The following section

examines this similarity based on two different RC-circuits.

4.6 RC-circuit Analogy

Heat conduction process can be considered as a process which can be represented

with representative resistance and capacitance in a RC circuit. Two different RC

circuits are shown in Figure 4.5.

The first circuit is used as a low-pass filter which removes the high frequency

content of the input signal. When the frequency domain analysis is performed for the

input and the output signals, the following transfer function can be obtained:

δEout

δEin

=
1

τs + 1
, (4.73)

where τ = RC is the time constant of the circuit, which is equivalent to the inverse

of the Fourier number defined by Eq. (4.58). R and C represent the resistance and

capacitance in the circuits shown in Figure 4.5. The basic function of the circuit is

integration and it filters the high frequency oscillations in the input signal. Comparing

to the transfer function obtained between the heat flux (reaction frequency) and heat

generation (neutron amplitude) given in Eqs. (4.66) and (4.72), it can be concluded

that the heat conduction process behaves similarly compared to the RC-integrator

circuit which removes the high frequency oscillations in the input signal, which is the

neutron flux amplitude.
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Figure 4.5. High Pass and Low Pass RC Circuits

The detailed properties of a RC-integrator can be analyzed by giving a sinusoidal

input signal with an oscillating frequency, ω. The input signal can be defined as

Ein = Ain sin(2πωt) (4.74)

and the output signal

Eout = Aout sin(2πωt + φ) (4.75)

where φ is the phase shift between the input and output signals. Ain and Aout

represent the input and output amplitudes, respectively. The amplitude ratio of the

output signal to the input signal, which is the damping in the system, can be written

as
|Aout|
|Ain

=
1√

1 + (ω/ωf )
. (4.76)

Furthermore, the phase shift between the input and output signals is written as

φ = − arctan(ω/ωf ) (4.77)

where ωf is the characteristic frequency given as the reciprocal of the circuit time

4-29



constant, τ . Similarly, for the heat conduction process, the characteristic frequency

is proportional to the Fourier number.

There is a certain relation between the oscillation period and the time constant

in terms of the damping in the system. However, it can be easily shown that when the

oscillating frequency is much larger than the Fourier number, ω � NFo, the system

has large damping on the neutron flux oscillations. In other words, the high-frequency

oscillations in neutron flux are smoothed out by the heat conduction. The coolant side

does not feel rapid change in the heat generation due to the high frequency neutron

flux oscillations. On the other hand, when the oscillating frequency is much smaller

then the Fourier number, ω � NFo, which corresponds to low-frequency oscillations,

there is almost no damping. Therefore, large amplitude neutron flux oscillations are

translated into large amplitude heat flux oscillations on the fuel element wall.

For the second circuit in Figure 4.5, which is CR-Differentiator circuit, the

transfer function between the input and the output signal is written as

δEout

δEin

=
τs

τs + 1
. (4.78)

The RC-Differentiator circuit is used for removing the low-frequency content of the

signal. In other words, only high-frequency information is passed through. From the

transfer function of the wall heat flux in the single phase region given by Eq. (4.66),

it can be seen that the coolant side perturbation like velocity and the inlet subcooling

have RC-Differentiator-like behavior on the wall heat flux. However, the neutron flux

oscillations have major contribution to the wall heat flux oscillations. In addition, in

the two-phase region, inlet velocity and subcooling have no effect on the wall heat

flux response. Therefore, low-pass filter behavior is dominant in the heat conduction

process.
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5. NEUTRON KINETICS MODELING

The neutron kinetics describes the rate of change in the neutron flux throughout

the core. Since the neutron flux level determines the amount of heat generation

inside the fuel pellet as a result of fission, it is directly related to the volumetric heat

generation rate in the heat conduction equation.

General introduction and modeling strategy for the neutron kinetics analysis

are presented in this chapter. After some introductory material, Point Kinetic Model

(PKM) is described as a model for simulating the void-reactivity coupling simulation

in the experimental facility.

The vital part of the void-reactivity feedback simulation is to generate the

void-reactivity coefficient which links the neutron flux change to the void fraction

change in the core. HELIOS [47], a two-dimensional neutron transport code, is used

to determine the void-reactivity coefficient for a typical SBWR fuel bundle under

different operating pressures and average void fractions. By generating the neutron

group constants at different thermal-hydraulic conditions, the reactivity coefficient as

a function of simulated void fraction and pressure used in the simulation is obtained.

5.1 Introduction

The nature of the kinetic problem in reactor physics highly depends on the

time constant of the phenomenon considered [48]. Three different phenomena can be

highlighted:

1. Short Time Phenomena, which typically occur in time intervals of milliseconds

to seconds: In special cases, the time intervals may extend to many minutes.

2. Medium Time Phenomena, which occur over hours or days corresponding to

the mean buildup and decay times of certain fission products that can strongly
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affect the reactivity.

3. Long Term Phenomena, with variations developing over several month to years.

In each category, the modeling strategy differs appreciably. For the startup

analysis of SBWR, the strategy includes the phenomena of first and second types.

Since the startup process takes over hours, medium time phenomena becomes impor-

tant and requires consideration of control rod motion and power increase. On the

other hand, possible oscillation in the flow field causes the void-reactivity feedback

loop to occur, which creates short time power change within seconds. For the medium

term transients, parameters affecting the neutron kinematics can be considered in a

quasi-steady manner. However, for the latter case in which void oscillations occur

in the core, transient aspects of the problem should be considered in detail such as

the heat conduction time constant (Sec. 4.4), the neutron generation time, and the

precursor decay constant, etc.

The transient behavior of neutron flux in the core is a result of off-criticality.

In other words, transient is caused by the imbalance between the neutron production

via fission and loss via absorption and leakage. Off-criticality can be described by a

time-dependent neutron diffusion equation of the form

1

υ

∂Φ

∂t
= (F−M− Fd)Φ + Sd, (5.1)

where

F : Fission operator which contains fission cross section

Fd : Delayed fission operator which represents the delayed fission neutron source

M : Diffusion and loss operator which contains absorption and transport cross

sections

Φ: Space, time and energy dependent neutron flux

Sd : Delayed neutron source coming from the decay of some of the fission products

υ : Neutron velocity
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Small fraction of total fission neutrons comes from the decay of some of the

fission products. Even though the fraction, which is called “delayed neutron yield”,

is very small (0.00625), it is very important in nuclear reactor control because of

their long time constants [48]. Since the delayed neutrons are coming from some of

the fission product groups, the delayed neutron population is also a function of the

neutron flux. Therefore, an equation for Sd is necessary for closure. The relation

between the delayed neutron source, Sd, and the precursor concentration, Ck, is given

as follows:

Sd(~r, t) =
∑

k

λkCk(~r, t) (5.2)

where index k represents the kth precursor group. The equation for the precursor

concentration of the group k is written as a simple balance equation consisting of a

source term due to fission and loss term due to radioactive decay:

∂Ck

∂t
= −λkCk(~r, t) +

∫ ∞

0

νdkΣf (~r, t)Φ(E ′~r, t)dE ′. (5.3)

where the energy dependency in the neutron flux is considered.

Precursor groups describes the nuclei groups having similar properties in terms

of the decay constant and neutron energy. Each group can be described with precursor

concentration, Ck, decay constant, λk, and delayed neutron yield, νdk.

5.2 Point Kinetic Model

Transient behavior of the neutron flux or the core power generation can be deter-

mined by solving the Eqs. (5.1) and (5.3). However, the neutron group cross-sections,

especially absorption and transport cross-sections are strong functions of temperature

and flow field. In bwrs, the coolant density or the void fraction changes the diffu-

sion and loss operator, M, appreciably. The phenomenon is called “void-reactivity

feedback” and requires the knowledge of the void-fraction dependent neutron group

cross-sections.

There are some simplified models which can be used to predict the time-
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dependent behavior [48]. The Point Kinetic Model (PKM) is one of the very sim-

plified models which has been used over the years. It is based on the separability

assumption that space and time dependency of neutron flux can be described by two-

separate functions; neutron amplitude,n(t), and neutron flux distribution at steady

state, Φo(r). Therefore, the neutron flux can be written as a product of these two

functions

Φ(r, t) = n(t)Φo(r), (5.4)

This model considers the reactor core as a point where time dependent change in

neutron flux distribution is negligible. This model gives good estimation for BWR

oscillations where the whole core oscillates in-phase [20].

Based on the separability assumption, two set of ordinary differential equa-

tions can be obtained for the neutron amplitude function, n(t), and the precursor

concentration for group k, ξk(t), as follows

dn

dt
=

ρ(t)− β

Λ
n(t) +

1

Λ

6∑

k=1

λkξk(t) (5.5a)

and
dξk

dt
= −λkξk(t) + βkn(t), (5.5b)

where

βk : Delayed neutron yield of the kth group

λk : kth group precursor decay constant

ξk : kth group reduced precursor concentration

ρ : dynamic reactivity
k − 1

k

Λ : neutron generation time

Reactivity used in Eq. (5.5a) is an integral quantity defined as

ρ =
k − 1

k
(5.6)

where k is the multiplication factor, which is the inverse of the eigenvalue of the
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diffusion equation. From its definition, reactivity is zero for a critical reactor. Positive

values indicate the super-criticality and negative values indicate the sub-criticality.

The formal definition of reactivity can be derived from the first order perturbation

theory as [49]

ρ(t) =

∫
V

∫
E

Φ∗
o(r, E)( 1

k
∆F−∆M)Φo(~r, E)dEdV∫

V

∫
E

Φ∗
o(~r, E)FoΦo(~r, E)dEdV

, (5.7)

where Φ∗
o is adjoint flux which shows the importance of neutrons. The adjoint flux

is actually the eigenfunction of the neutron diffusion problem at steady state written

in terms of adjoint operators for M and F. Ref. [49] provides detailed explanation of

the problem for adjoint flux and operators for the neutron diffusion equation. For the

one group neutron diffusion equation, it can be shown that the adjoint flux, Φ∗o, is

same as the neutron flux, Φo. Therefore, Φ∗
o is larger at the core center where neutron

population is higher and more important. The definition of reactivity involves the

change in migration and fission operators. For BWR applications, reactivity change

due to the void fluctuations comes from the change in M.

For a general neutron kinetics problem, the reactivity should be provided in or-

der to solve the problem when the Point Kinetic Equations (PKEs) given in Eqs. (5.5a,5.5b)

and are used ρ consists of several components,

ρ(t) = ρext(t) + ρα(t) + ρD(t) (5.8)

where

ρext(t) : reactivity due to control rods or other control elements

ρα(t) : reactivity due to void fraction change –moderator density

ρD(t) : reactivity due to fuel temperature change – Doppler

External reactivity due to control rod motion is the reactivity that can be

computed from power curve. For a given power transient, inverse problem, which will

be described later, can be solved for reactivity. However, for medium transients such

as the startup of SBWR, one should also consider the thermodynamic state change
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(changes in the average void and the fuel temperature) during this transient. In

that case, it is necessary to consider the reactivity loss due to the moderator density

change via average core void fraction and fuel temperature changes.

The void-reactivity and the fuel temperature-reactivity are two important re-

activities that link the thermal-hydraulics and the neutronics. Generally, they are

specified with reactivity coefficients which show the change in the reactivity due to

change in the feedback parameter, either the void fraction or the fuel temperature.

Therefore, following coefficients are defined for the thermal-hydraulic feedback reac-

tivities,

Kα =
∂ρ

∂α
(5.9a)

and

KD =
∂ρ

∂Tp

(5.9b)

where 〈〈T〉〉p is the fuel pellet temperature which is properly averaged over pellet

region considering the pellet radial power shape. Based on the definitions of the

reactivity coefficients, reactivity due to each feedback loop can be determined from

the following equations:

ρα =

∫ 〈〈〈α〉〉〉(t)

〈〈〈α〉〉〉o
Kαd〈〈〈α〉〉〉 (5.10a)

and

ρD =

∫ 〈〈T 〉〉p(t)

〈〈T 〉〉po

KDd〈〈T 〉〉p (5.10b)

5.3 Void Reactivity Coefficient for SBWR

The void-reactivity coefficient, the vital part of the void-reactivity feedback sim-

ulation, is calculated by means of the HELIOS code [47], which is a two-dimensional

neutron transport code. A typical SBWR 8 × 8 square-array fresh fuel bundle is

considered for the analysis. All detailed structures such as Zircaloy-2 bundle-box,

single-phase liquid which surrounds the bundle can and control rod blade are mod-

eled.

Considering the different pressure levels during the startup process, bundle-
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Figure 5.1. Change in Bundle Reactivity with the Void Fraction at Dif-
ferent Pressures

reactivity for the sbwr is generated for different values of the void fraction. By

varying the void fraction from 0% to 100%, the bundle-reactivity is plotted against

the void fraction at different pressures. As an example of the calculation results,

Figure 5.1 demonstrates the change in bundle reactivity with the void fraction at two

different pressures.

As shown in Figure 5.1, the bundle reactivity increases with the void fraction

at low pressures. This behavior can be explained in terms of the absorption and the

moderation effect of the water at low pressure. The liquid density at low pressures

is higher than the density at high pressures. Therefore, the bundle is initially over-

moderated. In other words, neutrons are effectively thermalized and some of the

5-7



neutrons are absorbed by the coolant. The amount of the absorption effect is higher

than that of the moderation. Therefore, increasing the void fraction is equivalent to

remove the absorber material (like withdrawing a control rod). Until a certain void

fraction value is reached, the absorption effect of the coolant is important. However,

when the void fraction is further increased, the reactivity starts to decrease due to the

loss of the moderator material. At the nominal operating pressure, bundle is always

under-moderated. Therefore, increasing the void fraction always accompany with

decreasing reactivity assuring that the void-reactivity coefficient is always negative.

Figure 5.2 shows the derivative of the plot in Figure 5.1 which is the void-reactivity

coefficient. It can be clearly seen that at low pressures up to around 22% void fraction,

void-reactivity coefficient is positive. However, the total reactivity coefficient,i.e., the

sum of the void-reactivity and Doppler reactivity, is always negative, otherwise the

reactor cannot be stable. The requirement for a reactor to be stable all the time is

that it should have a negative power-reactivity coefficient, thus an increase in reactor

power is always accompanied with decreasing reactivity.

In order to reveal the complete picture relevant to the void-reactivity coefficient

in the SBWR fuel bundle, several pressure levels are tested and the void-reactivity co-

efficients is calculated. Figure 5.3 demonstrates the pressure effect on void-reactivity

coefficient. Since the reactivity coefficient is averaged over a certain range of the

void fraction, the positiveness of the coefficient at low pressure is lost. The averaging

is performed over void fraction range from 0% to 30%. Smaller averaging intervals

would reveal the positive void reactivity coefficient region at lower pressure. However,

the important point in this analysis is that the negative reactivity coefficient increases

in magnitude as the pressure increases which increases the amount of reactivity due

to void fluctuations.

5.4 Calculation of Reactivities for Point Kinetic Model

A calculation of a transient via PKEs requires specification of reactivities of

different types. In this section, a methodology for calculating the following reactivities

is discussed:
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i. Void Reactivity due to void fraction change

ii. Doppler Reactivity due to fuel temperature change.

5.4.1 Feedback Reactivities

The void-reactivity feedback caused by th void fraction change in two-dimensional

core can be estimated from [50]

∆ρα(t) =
1

V

∫∫∫

V

Φ(~r)∗Φ(~r)Kαα(~r)dV, (5.11)

where Φ∗(~r) is the adjoint flux described in Section 5.2. In one-group diffusion theory,

it can be shown that the adjoint flux, Φ∗(~r), is identical to the neutron flux, Φ(~r), or

simply the core power distribution [49]. The definition of the void-reactivity can be

further simplified by considering the volume-averaged void fraction as;

∆ρα(t) =

∫ 〈〈〈α〉〉〉(t)

0

Kαd〈〈〈α〉〉〉, (5.12)

where 〈〈〈α〉〉〉 is the volume-averaged void fraction which includes the effect of power

shape and Kα is the void-reactivity coefficient which is calculated via HELIOS [47]

code predictions described in Section 5.3.

Similarly, the Doppler reactivity coefficient can be computed from

∆ρD(t) =

∫ 〈〈〈Tp〉〉〉(t)

〈〈〈Tp〉〉〉o
KDd〈〈〈Tp〉〉〉 (5.13)

where 〈〈〈Tp〉〉〉 is the volume-averaged fuel pellet temperature.
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6. FLOW EXCURSION MODELING VIA SUBCOOLED BOILING

The detailed analysis of the flow excursion phenomenon in forced and the natu-

ral circulation systems is presented in this chapter. The dimensionless characteristic

equation derived based on the analytical modeling presented in Chapter 3 is solved to

generate stability maps on Subcooling Number – Zuber Number and Zuber Number

(or Subcooling Number) – Froude Number planes.

Before deriving the general characteristic equation for the flow excursion, the

problem fundementals are described in terms of the integral loop momentum equation.

The channel pressure drop characteristics are described on the pressure drop vs. mass

flow rate curve.

The steady-state solution of the dimensionless equations introduced in the pre-

viuous chapter is presented and the dimensionless pressure drop components are ob-

tained by integrating the momentum equation over the single-phase and the two-

phase regions. The criterion obtained for the flow excursion stability is applied and

the characteristic equation is obtained in terms of the dimensionless numbers.

6.1 Stability Criterion for Flow Excursion

For simplicity, let us consider a single heated channel imposed to constant pres-

sure drop boundary condition. Integrating the momentum equation along the flow

path gives the following loop momentum equation:

( lh
Ah

)dṁ

dt
= ∆Ps −

∑
i

(∆P)i (6.1)

where ∆Ps is the supply pressure drop for the channel, which is provided by either a

pump or gravity head. In the particular example, the supply pressure drop is taken

constant, i.e. independent from channel flow rate, ṁ. ∆Pi is the ith pressure drop
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component such as gravity, friction, spatial acceleration etc.

By assuming small perturbation around the steady state solution for flow rate

and expanding the pressure drop into the Taylor Series expansion, the following equa-

tion can be obtained after neglecting the second and higher order terms:

δṁ(t) = δṁ(0) exp

[(
lh
Ah

){
∂∆Pso

∂ṁ
−

∑
i

∂(∆Po)i

∂ṁ

}
t

]
(6.2)

In order for the initial perturbation on the channel flow rate,δṁ(0), to die away,

the term inside the exponential in Eq. (6.2) should be negative. Therefore, for the

stability of the system in terms of the flow excursion, the following criterion should

be met,
∑

i

∂∆(Po)i

∂ṁ
≥ ∂∆Pso

∂ṁ
= 0 (6.3)

where the subscript,o, denotes the steady state value. The steady state pressure drop

can be written as a summation of the several components;

(∆P)o = (∆P)in + (∆P)fr + (∆P)gr + (∆P)sa + (∆P)dr + (∆P)e (6.4)

The first term on the right-hand-side of Eq. (6.4) is the channel inlet pressure drop,

the second term is the frictional pressure drop, the third is the pressure drop due

to the gravity, the forth term is due to convective acceleration, the fifth term is the

pressure drop due to the drift and last term stands for the localized pressure drop at

the channel exit.

6.2 Characteristic Equation for Flow Excursion

The characteristic equation for the flow excursion can be derived based on the

steady state solution of the dimensionless field equations. The formulation presented

in this section considers the following sections:

i– Single Phase Heated Section

ii– Two-Phase Mixture Heated Section
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iii– Two-Phase Mixture Unheated Section

For each region, required field equations are solved to obtain the velocity and the

density profile. Finally, the integration of the momentum equation in each region

yields Euler Number,NEu, which is the ratio of the pressure to the inertia forces,

defined as

NEu =
∆P

ρfυ2
fin,o

=
∆P

ρf (Ωslh)2

(Ωslh)
2

υ2
fin,o

= ∆P∗N2
Zu (6.5)

6.2.1 Single-Phase Heated Section

The constant liquid density assumption yields spatially uniform liquid velocity

in the single phase heated section. Therefore, up to the PNVG ,λ, the dimensionless

velocity is given as the inverse of the Zuber number defined by Eq. (3.59). Since

axially uniform heat flux distribution is assumed, the single phase energy equation

can be easily integrated to obtain the non-boiling height with the following bound-

ary conditions; Ns(0) = Nsub, and Ns(λ) = Nsd, which is the dimensionless departure

enthalpy for PNVG. Therefore, the non-boiling height is give as follows:

λ∗ =
Nsub

NZu

−
1

NZu





0.0022
D∗

e

ξ∗h

1

a∗f
NPe < 70000

154

A∗
h

NZu NPe ≥ 70000

(6.6)

The integration of the momentum equation given by Eq. (3.52) in this region,(0 <

z∗ < λ∗), gives the single phase heated region Euler number as follows;

N1φ
Eu,h =

[(
Nf +

1

NFr

)
λ∗ +

Kin

2

]
(6.7)

6.2.2 Two-Phase Mixture Heated Section

In order to integrate the momentum equation over this region, the void distribu-

tion should be obtained via solving the continuity equations described in Chapter 3.
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The solution of the mixture volumetric flux equation (Eq. (3.42)) gives a linear profile,

j∗(z∗) =
1

NZu

+ Cg(z
∗ − λ∗) (6.8)

and the kinematic wave velocity becomes

C∗
k =

Co + Nd

NZu

+ CoCg(z
∗ − λ∗) (6.9)

where Cg is the parameter defined by Eq. (3.33) to account for the subcooled boiling

in the volumetric vapor generation rate.

The solution of the density wave equation with Eq. (6.9) along with boundary

condition, ρ+∗
m (λ∗) = 1, is given by,

ρ+∗
m =

C∗
k(λ∗)

Ck(z∗)
(6.10)

which is related to the real density as

ρ∗m =
(Co − 1)C∗

k(z∗) + C∗
k(λ∗)

CoC∗
k(λ∗)

(6.11)

From Eq. (6.11), the heated channel exit density required for the solution in the

unheated section can be obtained as follows:

ρ∗me =
(Co − 1)C∗

r + 1

CoC∗
r

(6.12)

where C∗
r is the ratio of the kinematic wave velocity at the channel exit and the

boiling boundary, given by

C∗
r = 1 +

NZuCoCg

Co + Nd

(1− λ∗)

which is always greater than one as long as the two-phase mixture exists in the heated

section.
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The momentum equation given by Eq. (3.56) can be integrated to determine

the Euler number in the two-phase mixture heated section. The integration of the

second term in Eq. (3.56) yields the Euler number due to convective acceleration:

Nsa
Eu,h =

C∗
r − 1

1 + C∗
r (Co − 1)

(6.13)

The Euler number due to friction is determined as:

Nfr
Eu,h = Nf

Cm(Co + Nd)

NZu(Co − 1)Cg

[
(C∗

r − 1)− 1

Co − 1
ln

(1 + C∗
r (Co − 1)

Co

)]
(6.14)

The Euler number due to gravity is

Ngr
Eu,h =

1

NFr

[
Co − 1

Co

(1− λ∗) +
Co + Nd

NZuC2
oCg

ln(C∗
r )

]
(6.15)

Finally, the Euler number in terms of the localized pressure drop at the channel exit,

where the two-phase mixture exists, can be written as

Ne
Eu,h =

Ke

2

CoC
∗
r

1 + C∗
r (Co − 1)

(6.16)

The total Euler number in the heated section is given in Appendix A. In the following

section, the Euler number is obtained for the unheated two-phase mixture section.

6.2.3 Two-Phase Mixture Unheated Section

Since it is assumed that unheated section is adiabatic and the compressibility

effects are neglected, the void fraction is spatially uniform throughout the unheated

part. The mixture velocity in this section becomes

υ∗muh = υ∗m(1)
1

A∗
uh

where A∗
uh is the dimensionless flow area in the unheated two-phase mixture section.

By integrating the momentum equation, the Euler number for this section is obtained
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as follows:

N c
Eu =

CoC
∗
r

1 + C∗
r (Co − 1)

[
CmNf

D∗
e,uhA

∗2
uh

+
Ke,c

2

1

A∗2
uh

]
+

1

NFr

1 + C∗
r (Co − 1)

CoC∗
r

l∗uh (6.17)

where Ke,c represents the localized flow resistance at the unheated section exit.

In contrast to the forced circulation systems, the subcooling number is not in-

dependent parameter in the natural circulation systems. It depends on the feedwater

subcooling and the heated section exit quality which determines the amount of sat-

urated liquid separated in separator section of the loop. Therefore, the subcooling

number in the natural circulation systems is a function of the feedwater subcooling

number and the Zuber number. By means of a simple energy and mass balance in

the mixer region, one can obtain the expression for the subcooling number as

Nsub =
(1− Nρ)N

F
sub

1 + Nρ(NF
sub − 1)

NZu (6.18)

where NF
sub is the feedwater subcooling number defined in terms of the feedwater

enthalpy, iFf .

Finally, the Euler number of the system can be written as sum of all components

as described before;

NEu = N1φ
Eu,h + N2φ

Eu,h + N2φ
Eu,uh

The detailed form of each term is summarized in Appendix A. From Eq. (6.3), the

dimensionless characteristic equation can be written by considering the inlet velocity

dependency of some of the dimensionless groups such as the Zuber number, Froude

number, friction number, and the drift number. In the natural circulation systems, it

has been shown that the subcooling number also depends on the inlet velocity via the

Zuber number. Therefore, the subcooling number dependency in the characteristic

equation should be included.

The characteristic equation for the flow excursion can be written based on the

partial derivatives of the Euler number respect to the dimensionless numbers described
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above, as follows:

Q∗ = −NZu
∂NEu

∂NZu

+ 2NFr
∂NEu

∂NFr

− Nsub
∂NEu

∂Nsub

+ mNf
∂NEu

∂Nf

− Nd
∂NEu

∂Nd

= 0 (6.19)

which is written in a general form,

Q∗(NZu, Nsub, NFr, Nf , Nd) = 0

where m is the Reynold number exponent in the single phase friction factor, which is

around 0.25 for the turbulent flow. The negative values of the characteristic equation

for the given geometry and operational conditions imply the instability in terms of

the flow excursion.

6.3 Pressure Drop vs. Flow Rate Curve Characteristics

As described in Section 6.1, the physical mechanism that causes the flow ex-

cursion phenomenaon is explained in terms of the channel pressure drop and the

supply pressure drop characteristics. In this section, the detailed discussion on the

∆P–υi curve is presented based on parametric study performed for a typical BWR

fuel bundle. Effects of several important parameters such as the heat flux, the inlet

subcooling, the localized flow resistance, and the flow orientation are discussed.

Figure 6.1 explains the basic properties of the pressure drop in a heated channel.

One of the distinguished characteristics of the two-phase flow is that it has higher

pressure drop compared to single-phase flow with the same mass flow rate. Especially

the frictional and the accelerational pressure drop components of the total channel

pressure drop increases with decreasing flow rate. This is because of increasing in

the flow quality with decreasing flow at fixed power input. Therefore, under certain

conditions, the demand pressure drop curve may have a negative slope. The supply

pressure drop or the pressure drop across the channel is constant for the parallel

channel systems and natural circulation systems. This causes multiple steady-state

solution exists. It is obvious that the solution on the negative-slope portion is stati-
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Figure 6.1. The Pressure Drop versus Flow Rate Curve

cally unstable because of the criterion given by Eq. (6.3).

For a typical BWR bundle geometry, the pressure drop components are shown

in Figure 6.2. As the figure implies, the two-phase frictional and the accelerational

pressure drop are the main cause of the s-shaped curve. However, the gravitational

pressure drop component always tries to make the derivative of the curve positive in

the upward flow systems. Therefore, gravity is stabilizing effect.

6.3.1 Effect of Heat Flux

The power input is the important parameter for the flow excursion since it

determines the amount of void generation in the system. For understanding the

effect of the heat flux on the pressure drop versus flow rate curve, several values of

heat input are considered. Figure 6.3 clearly shows that increase in the heat flux

enlarges the negative slope portion of the curve and makes the system more unstable.

The starting point of s-shape shifts towards the higher flow rate as the heat flux

increases. Since the s-shape curve may move up and down with the heat flux, and the

channel demand pressure drop is more or less constant, system may have unstable

steady-state solution by varying the heat flux.
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Figure 6.2. Pressure Drop Components for a Typical BWR Fuel Bundle
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6.3.2 Effect of Inlet Subcooling

The inlet subcooling is another important parameter for the steady-state charac-

teristics of a heated channel. It determines the single-phase length and the time-lag

in the single-phase heated section. Figure 6.4 demonstrates the effect of the inlet

subcooling on the pressure drop characteristics. It shows that increase in the inlet

subcooling has the same effect as increasing the heat flux and is destabilizing effect.

6.3.3 Effect of Localized Flow Resistances

The localized flow resistances at the inlet and the exit of the bundle are exam-

ined. Figure 6.5 shows that large values of Ki eliminates the negative slope portion

of the curve, while Ke increases the negative slope region on the curve. Obviously,

increasing Ki is stabilizing effect on the flow excursion. However, as the figure demon-

strates, the stability is paid by the pumping power requirements for a given flow rate

because of the increase in the channel pressure drop.
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Figure 6.6. Effect of Gravity Field on ∆P-ṁ Curve

6.3.4 Effect of Channel Orientation

The effect of the gravity is investigated by considering three different flow ori-

entations: Upward, Downward and Horizontal. Figure 6.6 demonstrates that the

gravity in the upward flow is always stabilizing, because it has positive contribution

to total pressure drop. In contrast to the upward flow, downward flow seems to be

the most unstable flow configuration in terms of the flow excursion because of the

inverse effect of the gravity field.

6.4 Stability Maps for Flow Excursion

The equation derived in Section 6.2 describes the stability of a given system

in terms of the dimensionless groups. It is common practice to show the stability

boundary on a suitable map. For the purpose, two different stability maps are in-

troduced; Subcooling Number vs. Zuber Number and Zuber Number vs. Inverse of

Froude Number Planes.
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Table 6.1. Typical BWR Fuel Bundle Geometrical Data

Bundle Type 8× 8, Square Array
Hydraulic Diameter(m) 1.32× 10−2

Heated Perimeter (m) 2.52
Heated Height (m) 3.71
Flow Area(m2) 100.9× 10−4

As an example for the forced circulation systems, a typical BWR fuel bundle is

considered. The geometrical parameters for the bundle is presented in Table 6.1.

6.4.1 Subcooling Number versus Zuber Number Plane

The subcooling number vs. zuber number plane is well-known stability plane [12]

and combines the effect of the subcooling, the channel power, the inlet velocity and

the pressure in a single plane. The characteristic equation is solved by fixing the

dimensionless numbers other than subcooling number and zuber number via bisec-

tion method. The detailed discusssion about the characteristic equation and solution

methedology are given in Appendix A. A typical stability map on the subcooling

number vs. zuber number is shown in Figure 6.7. Two lines enclosing the unstable

region represent the solution where
∂∆P

δυi

is zero. Therefore, between the lines, the

channel pressure drop has negative slope.

The first boundary on the left-hand-side of the Xe = 0 line is due to subcooled

boiling initiated at the channel exit. In other words, the line can be considered as a

separating line between the single-phase and the two-phase regions inside the channel.

Since it is the indication of the starting point of the two-phase flow, from Saha-Zuber

model, an equation can be written for that line which can also be used to estimate

the flow excursion boundary. Assuming NPe ≥ 70000 where departure enthalpy is

hydraulically controlled, the following equation can be used to estimate the line

Nsub

NZu

= 154
Ah

ξhHh

(6.20)

Figure 6.8 shows the effect of subcooled boiling on prediction of flow excursion sta-
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Figure 6.7. Stability on Subcooling Number –Zuber Number

bility boundary compared to the model which assumes thermodynamic equilibrium

between the phases. The subcooled boiling should be included in the analysis of flow

excursion, since neglecting subcooled boiling gives non-conservative estimation for

stability boundary especially at high subcoolings.

When the thermodynamic equilibrium between the phase is assumes, unstable

region starts when boiling starts at the channel exit which is given by Xe = 0 line.

Similarly, first line can be estimated by the Saha-Zuber model for the departure en-

thalpy and provides good approximation for the stability boundary at high subcooling

numbers.

6.4.2 Zuber Number versus Inverse of Froude Number

It has been shown that gravity is one of the important parameters in the flow

excursion. Therefore, the stability boundary is expected to be strong function of

the froude number which is the ratio of inertial to gravity forces. Zuber number vs.

inverse of froude number plane is proposed for the flow excursion as an alternative
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Figure 6.8. Effect of Subcooled Boiling on Flow Excursion Boundary

stability map. Inverse of the froude number is used as one of the axis of the map.

A similar stability map can be generated by means of subcooling number instead of

zuber number. In this case, the map shows the constant zuber number curves.

Figure 6.9 shows a typical stability map on the zuber number vs. inverse of the

froude number plane. It is clearly shown that increasing the froude number is alway

destabilizing effect. This is basically due to decrease in the effectiveness of the gravity

field. Since the froude number is proportional to the square of the velocity, increase

in the froude number due to increase in the inertia is stabilizing due to decrease in

the zuber number as can be seen from Figure 6.7. The same stability map can be

generated for different subcooling numbers. Figure 6.10 shows the destabiziling effect

of the inlet subcooling by enlarging the unstable region.
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Table 6.2. SBWR Geometrical Data

Bundle Type 8× 8, Square Array
Number of Fuel Bundle 732
Core Hydraulic Diameter (m) 1.97× 10−2

Core Heated Perimeter (m) 1694
Core Heated Height (m) 2.74
Core Flow Area (m2) 7.4
Chimney Hydraulic Diameter (m) 0.5
Chimney Height (m) 9.1
Chimney Flow Area (m2) 18.6
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6.5 Forced Circulation versus Natural Circulation

Figure 6.11 demonstrates the comparison of the flow excursion boundary be-

tween the BWR and SBWR. The geometrical information of the SBWR as an example

of a natural circulation system is given in Table 6.2.

Figure 6.11 has shown that at high inlet subcooling, BWR is less stable than

the SBWR. The first boundary appears at the smaller zuber number due to the sub-

cooled boiling. In other words, the subcooled boiling is not important for the natural

circulation systems as far as the flow excursion boundary is concerned. However,

the natural circulation systems have larger negative slope region in the pressure drop

curve provided by the unstable area in the figure. It can also be seen that as the

subcooling becomes smaller, the natural circulation systems seem to be more stable.

This simulation has been performed by keeping the Ki and Ke same.
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7. NONLINEAR ANALYSIS OF NUCLEAR-COUPLED DWO

As discussed in Chapter 2, the frequency domain methods are useful tools when

the stability boundary is needed in the operational plane either in dimensional or di-

mensionless form. However, these tools uses small perturbation around steady state

and neglects the second and higher order terms which represent the nonlinear ef-

fects in the system. Therefore, important nonlinear effects such as amplitude of the

limit cycle oscillations are lost. In order to capture the physics of the nonlinear phe-

nomena in the nuclear-coupled flow instabilities in BWRs, the time domain solution

of the field equations representing several physical processes such as flow field, fuel

heat conduction, and neutron kinetics need to be solved. In view of the difficulty

of the problem in BWRs which require sophisticated time domain analysis tools, a

simple model is derived in this chapter to understand the basic physical phenomenon

underlying the nonlinear nature of the instability problem.

By introducing the Galarkin Weighted Residual Method, the field equations

governing the flow field (Chapter 3), fuel heat conduction (Chapter 4), and neutron

kinetics (Chapter 5) are transformed to a system of nonlinear ordinary differential

equation (ODE). In this chapter, the basic procedure to derive the equations for each

field is described. In the following section, the introductory information about the

Galarkin Method is presented.

7.1 Galarkin Weighted Residual Method

The field equations which are described in the following section, the governing

partial differential equation (i.e., flow field equations) can be written in a general form

as follows:

HΦ(z, t) = S(z, t) (7.1)
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where H represents the operator for the partial differential equation considered in the

problem. For instance, for a first order wave equation (liquid enthalpy wave, mixture

density wave), it is written in a general way as,

H , ∂

∂t
+ V

∂

∂z
(7.2)

where V represents the wave velocity by which the disturbances are propagated. In

Eq. (7.1), S denotes the source term.

The following approximate function is used to represent the solution of Eq. (7.1):

Φ(z, t) ≈ Φ′(z, t) = Φo(t) +
N∑

i=1

Φi(t)Ψi(z) (7.3)

where Φi, i = 1 . . . N represents the time dependent coefficients and Ψi, i = 1 . . . N

denotes the spatial dependency of the solution. When Eq. (7.3) is inserted into

Eq. (7.1), the residual equation can be derived as follows:

R(z, t) = HΦ′(z, t)− S(z, t) (7.4)

which is not equal to zero since the function Φ′(z, t) is not the solution of the system.

However, the coefficients, Φi, i = 1 . . . N , can be determined in such a way that the

residual in Eq. (7.4) is minimized. The coefficient, Φo(t), is given based on the

boundary condition for Eq. (7.1).

The residual equation given by Eq. (7.4) can be minimized by multiplying the

equation with appropriated weighting functions, Ξi(z), i = 1 . . . N and integrating

over the domain of interest. By evaluating the following integral, the ODEs for the

coefficients, Φi, i = 1 . . . N can be determined:

(R, Ξi) = 0 (7.5)

where (, ) is the inner-product operator for the two functions, F (z), G(t), given as
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follows:

(F, G) =

∫

D

F (z)G(z)dz (7.6)

where D represents the domain of interest.

In the following sections, the set of ODEs for the flow field, fuel heat conduc-

tion, and neutron kinetics is derived for the nonlinear dynamics of nuclear-coupled

instabilities in BWR systems.

7.2 Flow Field Formulation

The detailed discussion has been presented in Chapter 3 about the basics of flow

field formulation in dimensionless form 1. In this section, the necessary equations for

the nonlinear dynamics are derived based on Galarkin Weighted Residual Method

described in Section 7.1. However, for the purpose of analysis, some simplifying

assumptions are used. The mechanical and thermal equilibrium between the phases

are assumed. Therefore, the drift number, Nd and subcooled boiling number, Nsd

are set to zero. In the following sections, the details of the derivation are presented.

First, the single phase energy equation, which shows the propagation of the enthalpy

wave in the single phase heated section, is solved to determine the boundary between

the single and two-phase mixture section in a heated channel. Once the equation for

the boiling boundary is determined, the density wave equation given by Eq. (3.55) is

solved to obtain the mixture density or void fraction along the heated channel. By

knowing the boiling boundary and the mixture density, the dimensionless momentum

equations for the heated channel can be integrated.

At steady-state condition, it has been shown that the mixture density is spa-

tially constant in the unheated section. However, during the transient where the

heated section exit mixture density oscillates, the mixture density is also a function

of the space due to the void wave propagation. Therefore, the mixture density in the

unheated section should also be solved.

1In this chapter, the asterisk sign (*) is removed from the dimensionless equations. Throughout the
chapter, all parameters should be understood as dimensionless
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7.2.1 Boiling Boundary Dynamics

The single phase energy equation in dimensionless form is given by Eq. (3.49).

In this equation, Ω1φ, represents the reaction frequency in single phase heated region

which is given in terms of the wall heat flux. The formulation for the wall heat flux

is described in Chapter 4. It is important to mention here that the wall heat flux

is assumed spatially constant considering uniform wall heat generation and averaged

bulk liquid temperature.

The following polynomial of degree N1 is used to describe the general solution

to Eq. (3.49):

Ns(z, t) ≈ Nsin(t) + Ns1(t)z + . . . + NsN1(t)z
N1 = Nsin(t) +

N1∑
i=1

Nsiz
i (7.7)

where Nsin(t) represents the inlet subcooling which is introduced as a boundary con-

dition for the problem. By choosing the weighting function as zi, i = 0 . . . N1−1, and

integration domain as [0, λ(t)], the equation for the coefficients can be determined.

The equation can be written in matrix-vector form as follows:

M1φ
d~Ns

dt
= ~b1φ (7.8)

where the generic elements for the matrix, M1φ and the vector, ~b1φ can be written as

follows:

[M1φ]i,j , λi+j(t)

i + j
(7.9a)

[b1φ]i , −
(

dNsin

dt
+ Ω1φ(t)

)
λ(t)i

i
− υfin(t)

N1∑

k=1

kλk+i−1(t)

k + i− 1
Nsk(t) (7.9b)

where the vector, ~Ns in Eq. (7.8) is given as ~Ns = [Ns1 . . . NsN1 ]
T
.

The boiling boundary, λ(t), in Eq. (7.9a) can be determined by solving Eq. (7.7)

for λ(t) with given boundary condition, Ns(λ(t), t) = 0. Another method of deriving

an equation for the boiling boundary dynamics is to differentiate Eq. (7.7) with respect
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to time after inserting z = λ(t) in to the equation. The following equation can be

easily derived for the boiling boundary:

(
N1∑
i=1

iλi−1(t)Nsi(t)

)
dλ

dt
= −dNsin

dt
−

N1∑
i=1

dNsi

dt
λi(t) (7.10)

Equation (7.10) is coupled to Eq. (7.8). However, a simpler boiling boundary dynam-

ics equation can be derived by assuming linear enthalpy profile and constant inlet

subcooling. The resulting equation can be written as follows:

dλ

dt
= 2υfin(t)− 2

Ω1φ(t)

Nsub

λ(t) (7.11)

where Nsub is the subcooling number given by Eq. (3.58). The detailed derivations

related to the boiling boundary can be found in Appendix B.

7.2.2 Mixture Density and Velocity in Two-phase Mixture Regions

By assuming mechanical and thermal equilibrium between the phases, the equa-

tion for the mixture density in the heated section can be written as follows:

∂υm

∂z
= Ω2φ(t) (7.12)

which can be easily integrated by supplying the boundary condition at the boiling

boundary, υm(λ(t), t) = υfin(t) to obtain the solution as,

υm(z, t) = υfin(t) + Ω2φ(t)(z − λ(t)) (7.13)

where Ω2φ is the reaction frequency in the two-phase mixture heated section. It is

determined via solving the heat conduction equation.

The density wave equation in the heated section can be simplified as follows:

∂ρm

∂t
+ υm

∂ρm

∂z
= −Ω2φρm (7.14)
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which can be rewritten as H2φρm(z, t) = 0. The operator, H2φ is defined as

H2φ , ∂

∂t
+ υm

∂

∂z
+ Ω2φ (7.15)

For the solution of the mixture density in the heated section, the following N th
2

degree polynomial is proposed as an approximate solution:

ρm(z, t) ≈ ρ′m(z, t) = 1 +

N2∑
i=1

ρmi(t)θ
i (7.16)

where θ = z − λ(t) is the position in the heated mixture region. By choosing the

weighting function as θi, i = 0 . . . N2 − 1 and performing the integration for the

residual equation, the following set of equation can be obtained for the coefficients in

Eq. (7.16):

M2φ
d~ρm

dt
= ~b2φ (7.17)

where the generic elements for the matrix, M1φ and the vector, ~b1φ can be written as

follows:

[M1φ]i,j , θi+j
1 (t)

i + j
(7.18a)

[b2φ]i ,
(

N2∑

k=1

kθk+i−1
1

k + i− 1
ρmk(t)

)(
dλ

dt
− υfin(t)

)
(7.18b)

− Ω2φ(t)

(
(k + 1)θk+i

1

k + i
ρmk(t) +

θi
1

i

)

where the vector, ~ρm in Eq. (7.17) is given as ~ρm = [ρm1 . . . ρmN2]
T .

In the unheated section, the mixture velocity is spatially uniform as can be seen

from Eq. (7.12) since Ω2φ becomes zero. However, the mixture density is a function

of the spatial coordinate due to wave propagation. Therefore, solution of Eq. (7.14) is

needed to define the two-phase flow in the unheated section. The following polynomial
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of degree N3 is used for the solution:

ρm,uh(z, t) ≈ ρ′m(z, t) = ρme(t) +

N2∑
i=1

ρm,uhi(t)z
i (7.19)

where ρme(t) is the heated section exit mixture density. The integration domain for the

unheated mixture section for computing the equation for the coefficient of Eq. (7.19)

is [0, luh]. The parameter, luh, is the dimensionless unheated section height. The

general equation for the coefficients can be determined in a similar way performed for

the coefficients in the heated mixture region. In the matrix-vector form, the general

equation for the unheated mixture density coefficients is given as follows:

M2φ,uh
d~ρm,uh

dt
= ~b2φ,uh (7.20)

where the generic elements for the matrix, M1φ and the vector, ~b1φ can be written as

follows:

[M2φ,uh]i,j , li+j
uh

i + j
(7.21a)

[b2φ,uh]i , −υm,uh

N3∑

k=1

klk+i−1
uh

k + i− 1
ρm,uhk(t)− liuh

i

dρme

dt
(7.21b)

where the vector, ~ρm,uh in Eq. (7.20) is given as ~ρm,uh = [ρm,uh1 . . . ρm,uhN2]
T . The

heated section mixture density, ρme(t), is given by

ρme = 1 +

N2∑
i=1

ρmi(t)θ
i
1 (7.22)

where θ1 = 1 − λ(t) is the boiling length of the channel or the length of the heated

mixture region. The mixture velocity in the unheated section is spatially uniform and

from the continuity requirements it can be written as follows:

υm,uh(t) =
1

Auh

(
υfin(t) + Ω2φ(t)θ1(t)

)
(7.23)
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7.2.3 Flow Dynamics

The dynamic characteristics of the flow can be determined by integrating the

momentum equation over the heated and unheated section to yield an equation for

the inlet velocity, υfin(t). By using the constant pressure drop boundary condition

across the heated and unheated sections, ∆Ph +∆Puh = ∆Po, the following equation

can be obtained for the inlet velocity:

I(t)
dυfin

dt
= ∆Po (7.24)

− dΩ2φ

dt

(
θ2
1

2
+

N2∑
i=1

θi+1
1

i + 1
ρmi(t) +

θ1

Auh

(
ρme(t)luh +

N3∑
i=1

li+1
h

i + 1
ρm,uhi(t)

))

+ Ω2φ(t)
dλ

dt

(
θ1 +

N2∑
i=1

θi+1
1

i + 1
ρmi(t) +

1

Auh

(
ρme(t)luh +

N3∑
i=1

li+1
h

i + 1
ρm,uhi(t)

))

− ∆Psa(t)−∆Pfr(t)−∆Pgr(t)−∆Pform

where I(t) is the inertia of the flow which is given as follows:

I(t) = 1 +

N2∑
i=1

θi+1
1

i + 1
ρmi(t) +

1

Auh

(
ρme(t)luh +

N3∑
i=1

li+1
uh

i + 1
ρm,uhi(t)

)
(7.25)

In Eq. (7.24), ∆Psa denotes the convective acceleration. ∆Pfr, ∆Pgr represents the

frictional and gravitational pressure drop components along the heated and unheated

sections. The last term on RHS of Eq. (7.24) represents the localized pressure drop.

The detailed expressions for the pressure drop components are given in Appendix C.

7.3 Fuel Heat Conduction Equations

The detailed discussion about the heat conduction process inside a typical BWR

fuel element has been presented in Chapter 4 where the governing equations for the

fuel heat conduction equation are transformed. For the formulation of the problem,

the single-node lumped model is used. The field equations are reproduced here as

follows:
dθ1φ

dt
=

n(t)

〈ρc〉feAfe

− afe,1φ

(
θ1φ +

Nsin(t)

2

)
(7.26a)
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dθ2φ

dt
=

n(t)

〈ρc〉feAfe

− afe,2φθ2φ (7.26b)

where afe is the dimensionless thermal diffusivity defined for both single and two-

phase mixture section of the heated channel. The detailed expressions for afe in

each section are described in Chapter 4. However, the expression for the reaction

frequencies , Ω1φ and Ω2φ, are given here. In addition to the reaction frequencies, the

derivative of the reaction frequency in two-phase mixture region appears in Eq. (7.24)

needs to be derived.

The reaction frequency in the single phase region, Ω1φ is given by the following

equation:

Ω1φ = 〈〈ρc〉〉feAfeafe,1φ

(
θ1φ(t) +

Nsin(t)

2

)
(7.27)

The dimensionless thermal diffusivity is a function of the heat transfer coefficient in

the single phase heated section. The heat transfer coefficient, h1φ, is a function of the

inlet velocity as shown in Eq. (4.25). In the two-phase mixture region, the reaction

frequency is given by

Ω2φ = 〈〈ρc〉〉feAfeafe,2φθ2φ (7.28)

The derivative of Eq. (7.28) can be written by assuming the time rate of change in

the heat transfer coefficient, h2φ in two-phase mixture region is small as follows:

dΩ2φ

dt
= 〈〈ρc〉〉feAfeafe,2φ

dθ2φ

dt
(7.29)

where the time dependency in afe,2φ is taken into account via Eq. (4.27).

7.4 Neutron Kinetics

The neutron kinetic is modeled through the PKM as described in Chapter 5.

The time rate of change in the volumetric heat generation term is described by the

function n(t), which is the neutron amplitude function represented with Eq. (5.5a).

The delayed neutron source is represented via precursor concentration equation given

by Eq. (5.5b). Two important parameters in the neutron kinetics model are void-
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reactivity and Doppler reactivity feedback. In order to compute the feedback reactiv-

ities, the axial-averaged void fraction and fuel temperature are defined. The averaged

void-fraction for the channel is given in terms of the mixture density coefficients

described in Section 7.2.2 as follows:

〈α〉z(t) =
1

θ1(Nρ − 1)

N2∑
i=1

θi+1
1

i + 1
ρmi(t) (7.30)

where θ1 = 1 − λ(t) is the boiling length and Nρ is the density ratio number. The

averaged fuel temperature is defined as follows:

〈θ〉z(t) = (1− λ(t))θ2φ(t) + λ(t)θ1φ(t) (7.31)

By considering the void fraction-dependent void reactivity coefficient, Kα(α) and

constant Doppler reactivity coefficient, KD, the total reactivity, ρ(t), in Eq. (5.5a)

can be written as follows:

ρ(t) = ρext(t) +

∫ 〈α〉z(t)

〈αo〉z
Kα(α)dα + KD(〈θ〉z(t)− 〈θo〉z) (7.32)

7.5 ODE Set for the Nonlinear Dynamics

The equations derived in previous section can be written as a system of equation

as follows:
d ~X

dt
= ~F ( ~X;~γ) (7.33)

where the vector ~X represents the state variables for which the ODEs are derived.

Therefore, it is a vector of N1 + N2 + N3 + 11 dimensions: N1 equations for Nsi, i =

1 . . . N1, single equation for λ(t), N2 equations for ρmi, i = 1 . . . N2, N3 equations for

ρm,uhi, i = 1 . . . N3, single equation for υfin(t), single equation for θ1φ, single equation

for θ2φ, single equation for n(t), and finally six equations for ξi(t), i = 1 . . . 6. The

vector, ~γ represents the dimensionless numbers such as NZu, Nsub, Nρ, Nf , NFo, etc.,

representing the operational state of the system in terms of steady-state values.
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Figure 7.1. Neutron Flux Oscillations inside the Linearly Unstable Region

The model developed in this chapter is used to investigate the nuclear-coupled

flow instabilities in a typical BWR fuel bundle. Figure 7.1 demonstrates a typical

limit-cycle oscillations which can be observed in unstable region which is determined

by frequency domain tools. The limit-cycle is directly related to the nonlinear effects

inherent to the nature of the problem. Even though the system is linearly unstable,

the indefinite grow of oscillations are inhibited due to the nonlinearities. This can

also be viewed from phase portraits where nonlinear effects can be seen clearly. For

the purpose, the phase plane composed of the neutron amplitude function and its

derivative is demonstrated in Figure 7.2.
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8. EXPERIMENTAL FACILITY

An experimental facility has been designed and built to study thermal-hydraulic

instabilities and characterize the phenomena with hydrodynamic, kinematic and ther-

mal parameters. The measured parameters are area-averaged instantaneous void frac-

tion, temperature, pressure, pressure differential across certain section of the loop,

liquid flow rate, heater power. The facility is a scaled prototypic BWR based on scal-

ing criteria for geometric, hydrodynamic and thermal similarities. The experimental

facility, test section, instrumentation and data acquisition system are described in

this chapter.

8.1 Experimental Loop Layout

The experimental facility is mainly composed of a test section, bypass channel,

condenser/cooler, main tank, expansion tank, preheater and pump. The general

layout of the facility is shown in figure 8.1. Test section simulates the typical BWR

fuel channel with a single fuel rod. The large bypass channel incorporated parallel

to the test section. It provides constant pressure drop boundary condition for the

test section by allowing most of the flow through the bypass channel. The constant

pressure drop boundary condition is typical hydrodynamic boundary condition for

BWR instabilities. Especially, during oscillations where large number of fuel channels

are stable and few of them oscillate, this type of boundary condition is applicable. It

is also valid when out-of-phase oscillations are observed.

Large water volume is kept inside the main tank. The water is pumped from

this tank by a G&L SSH pump, and divided into bypass line and test section after

the preheater. The water can be mixed with air before it is injected into the test

section to calibrate the impedance meters, which are used for area-averaged void

fraction measurement. Air supply also provides the capability of performing air-water
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Figure 8.1. Experimental Loop Layout
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experiments in an annular channel. Preheater power can be setup to provide variable

heating for given set temperature or it can be adjusted manually through computer.

The test section is annular geometry which is built by PYREX glass pipes on the

outside and a cartridge heater on the inside. The air-water mixture flows through

the vertical test section. However, for the diabatic steam-water flow, flow enters with

a certain amount of subcooling, which is controlled by preheater and cooling water

flow rate. The boiling starts after certain point and two-phase flow region starts. The

steam-water flow then mixes with single-phase bypass flow and enters the condenser

located at the top section of the facility. The condensate flows downward toward the

main tank and pumped through the test section and bypass line.

The bypass section is made of 3.81 cm stainless steel pipe, providing 13.83 cm2

of flow area. The bottom of the pipe is directly connected prehater inlet with a hose

of length 60 cm. The bypass channel ensures that stable single-phase liquid flows

through the section so that it can provide constant pressure differential across the

test section. The magnetic flow meter is located on the middle of the bypass pipe to

measure the volumetric flow rate of liquid.

The main holding tank for the subcooled water is 600 gal. stainless steel tank.

The tank is cylindrical and oriented vertically. There are two penetrations on the

top and bottom. The 101.6 mm I.D. top penetration is connected to the condensate

return line, and the 152.4 mm I.D. bottom penetration is connected to the pump

inlet. A K-type thermocouple is installed at the pump inlet to measure the tank

water temperature.

The pump is an AISI 316L stainless steel pump manufactured by G&L Pumps.

It is controlled with a Toshiba S7 Adjustable Speed Drive. Following the pump exit,

the pipe is divided into test section flow and bypass flow through preheater. The

preheater is a process heater made by Gaumer Company, Inc. The 18 kW heater is

built in a 7.62 cm stainless steel pipe with a length of 136 cm. The heater is powered

with a three phase 480 VAC source. A flexible pipe is installed between pump inlet

and pipe coming from main tank to reduce the vibrations. Flow rate through test
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section and bypass are measured with two Honeywell MagneW-3000 magnetic flow

meters. The main flow is directed toward the test section with four separate line

made of 25.04 mm hose to make test section inlet flow uniform.

8.2 Test Section

A detailed schematic view of the test section is demonstrated in figure 8.2. The

test section flow is diverted via four separate lines. The air supply line is integrated

on each line via Mott type 850 sparger element made of stainless steel. The spargers

have overall length of 152.4 mm with a 95.3 mm porous length. Air comes from a

regulated laboratory supply. The supply air tank provides a constant supply of air at

896 kPa. A regulator and filter are placed in-line to provide a variable line pressure.

The regulator is a Norgren Excelon in-line filter-regulator. The air then flows into a

set of rotameters that control the flow rate of air into the spargers. The rotameters

are ranged 7.87 to 39.3 cm3/s, 23.6 to 157 cm3/s and 47.2 to 787 cm3/s. These

rotameters are accurate to ±10% scale. A pressure gauge is used to measure the line

backpressure. The air line leaves the pressure gauge and is divided into four separate

lines. Each line is connected to a gas sparger. Air and water lines are connected

to lower injection flange via four nipples, which are connected at 30◦ normal to the

flange bottom. The center of the cylinder has a 19.1 mm hole cut through it to

allow insertion of heater rod through the bottom flange into the test section. O-rings

are used to seal the connection of the heater rod and the flange. A strip heater is

wrapped around the flange to prevent heat loss. The strip heater is controlled with a

solid-state relay on a 120 VAC line. The solid-state relay is controlled with a Dwyer

model 15010 PID process controller and a thermocouple is placed between the heater

and the flange to provide a feedback loop. The flange is also insulated against heat

loss using fiberglass insulation.

The test section is mainly made of four transparent QVF conical pipes of length

60.69 cm. One polycarbonate pipe added to the test section for adjustment, as well

as three impedance probes inserted between these pipes. The total height of the test

section is 331.5 cm. Each glass pipe has 38.1 mm I.D. The maximum pressure of the
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pipes is 60 psig (4.2 kg/cm2). The pipes have deformation temperature of 525◦C,

and up to that point, they retain their mechanical strength. Furthermore, the glass

pipe has good properties related to permissible thermal shock. Maximum permissible

thermal shock is given as 120◦K, which is high enough for the instability tests where

oscillatory temperatures occur inside the test section. Two holes are built on the

bottom and top polycarbonate flanges. One hole is for a pressure tap and the other

one is for thermocouple. Differential pressure(DP) transducer lines are connected to

a Honeywell ST3000 smart pressure cell to measure pressure differential across the

test section. A pressure cell is connected to the inlet DP line to measure absolute

pressure at the inlet of the test section. The K-type thermocouples are installed at

test section inlet and outlet.

Test section is supported by five supports made of 1014 aluminum, which are

mounted on a single I-beam, for aligning. The supports are spring loaded to absorb

possible vibrations on the test section.

Test section heater (main heater) is a cartridge type heater, which is custom

made by Watlow Corporation. The overall length of the heater is 3.81 m and has a

19.1 mm O.D. The heated section of the heater rod is 287 cm and begins 64 cm from

the bottom of the heater. The maximum power of the heater is 40 kW and provides

a maximum heat flux 233 kW/m2. It is powered with a three phase 480 VAC source.

K-type thermocouple is inserted inside the heater at the location of 210 cm high

from bottom. The rod is is movable and can be traversed with a milling table. The

heater rod must be supported to prevent it from bending. Each impedance probe

provides two four-point support at its end flanges. Three sets of the support are used

to support the heater rod. For each support, a hole is drilled and tapped; a 6-24 316

stainless steel screw is used. The screw end that is in the flow field are machined off

and become a rounded tip. Although these supports interfere with the flow field, it

is a necessary trade-off for accurate positioning of the heater.

The top of the test section is connected to an expansion joint. The expansion

joint is necessary to accommodate the thermal expansion of the glass test section.
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Between the expansion joint and test section upper flange, there is another heater

rod support for centering.

Two OMEGA SCR73 series zero angle fired controllers are used to control the

power of the main heater and preheater. SCR is acronym for Silicon Controlled

Rectifier. The controller accepts a 4-20 mA input from a process controller. The

SCR uses zero voltage-switching that controls the load by controlling the number

of completed sine waves. Because only whole sine waves are used and the power

is switched when the sine wave crosses the zero, there exists no radio frequency

interference. The minimum power is 0.8% and the maximum power is 100%. The

SCR has a variable time base from 0.2 to 2 sec. The SCR of the heater is sized to allow

a maximum current draw of 75 amps for a 3 phase, 480 VAC potential. Similarly, the

SCR of the preheater is sized to allow a maximum current draw of 30 amps for a 3

phase, 480 VAC potential.

The SCRs are controlled with either the PC based data acquisition system or

an OMEGA CN7600 PID process controller. By using the former feature, nuclear

coupling due to void reactivity feedback can be simulated based on void-meter signals.

The OMEGA process controller uses a PID scheme to control the feedback temper-

ature. This feature is not used for the heater because constant heat flux is needed

during the experiments. This controller is used to prevent heater from burnout by

allowing a set point for a maximum temperature and a maximum temperature rate

change. The controller gives a 4-20 mA output that is interfaced to an SCR power

controller.

8.3 Experimental Loop Instrumentation

This section describes the instrumentation developed for and used in the exper-

imental loop. The instrumentation consists of impedance void-meters, a thermistor,

thermocouples, magnetic flow meters, differential and absolute pressure transducers.
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8.3.1 Impedance Void Meter

Knowledge of instantaneous void fraction in two-phase flow is important for both

theoretical and experimental aspects of the thermal hydraulic instability studies. Void

propagation velocity, which is the key for density wave oscillations, can be calculated

based on void fraction measurement through the flow channel.

Many methods have been applied for void fraction measurement [51]. For in-

stance, Revankar and Ishii [52] and Miller and Mitchie [53]. For the area averaged void

fraction measurement, attenuation techniques were used by Chan and Bannerjee [54]

and Eberle et.al. [55], whereas for the volume-averaged void fraction measurement,

the traditional ”Quick Valve Closure” method was used by Oliver and Hoon [56].

Among these techniques, the one based on the impedance measurement is the most

suitable for thermal hydraulic instability experiments due to its fast response and

direct knowledge of instantaneous area-averaged void fraction.

The impedance technique can provide the information about void fraction by

measuring the electrical impedance of two-phase flow, and applying the relationship

between the void fraction and the impedance. The fast response of impedance void-

meters makes it possible to use them for measurement during transient situation

as well as steady-state conditions. Impedance void-meters have attractive economic

features as well, since it is much easier to construct them than other void measurement

instruments.

8.3.1.1 Impedance Probe Design

The impedance void-meter consists of two major components: a probe and

an electronic circuit. The design of the impedance probe is based on the require-

ment of withstanding the higher temperature up to 120◦C. For good mechanical and

non-corrosive properties, stainless steel is chosen as the material for the electrodes.

Polycarbonate is used as an electrical insulator between electrodes, and the liner of

the probe. The structure of the probe is shown in figure 8.3. Two rings are flush

mounted on the inside wall and insulated from each other. The internal diameter is

same as the inner diameter of the test section. The height of the electrodes is 12.7
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mm and the distance between electrodes is 50.8 mm. A series of O-Rings are installed

in gaps between electrodes and insulator material.

The impedance circuit consists of several parts including a buffer, a current-

voltage amplifier, a rectifier, a low-pass filter and a voltage amplifier. An alternating

current is supplied at 100 kHz to the electrodes on the impedance probe in order

to avoid the double-layer effect. The circuit is versatile such that it can be adapted

for void fraction measurement of multiphase flow with liquids of different electrical

conductivities and different probe sizes by adjusting the gain of amplifiers of the

circuit.

In impedance-based void measurements, some errors might be introduced. These

errors can be avoided or reduced as discussed below;

1. Effect of Liquid Electrical Conductivity: The conductivity of water varies with

temperature. This effect increases the difficulty of void fraction measurements.

In order to account for the temperature effect on liquid conductivity, the re-

lationship between temperature and liquid conductivity is measured over tem-

perature range of interest. Based on this relationship, the measured impedance

can be converted into dimensionless form at reference temperature.

Conductive chemicals are added to water to increase its conductivity. The chem-

icals are Morpholine and Ammonia Hydroxide. The water conductivity is kept

around 300-400 µSi. Small portion of these chemicals might vaporize during

the experiments and could change water conductivity. However, it is difficult to

trace the conductivity change during the experiments. It is assumed that the

water conductivity is constant during the experiments. This assumption should

be justified based on the experimental results.

2. Electronics Drift: The output of impedance measurement circuit is proportional

to the amplitude of the carrier signal from the function generator, values of the

feedback resistors of voltage amplifier, and conductance of the two-phase mix-

ture. Therefore, the drift of the amplitude of the carrier signal and values
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of feedback resistors should be minimized. Feedback resistors with 0.1% tem-

perature coefficient are used. Normally tests are conducted after keeping the

instruments on for more than one hour to stabilize the circuit as well as the

function generator.

3. Mechanical Installation Error: It should be noted that mechanical errors could

be introduced if the impedance probes were not installed with proper alignment.

In order to reduce mechanical errors, the impedance probes are installed with

extreme care and properly aligned with the test section.

8.3.1.2 Theoretical Basis

During the experiments, the water acts as conductive liquid, and conductance

measurements are performed. Normally, conductance of a two-phase mixture depends

on conductivity of the phases and their distribution. If conductivity can be assumed

constant, the relationship between impedance and void fraction can be predicted for

some ideal distributions such as uniform dispersed flow and concentric separated flow.

The dimensionless impedance of a two-phase mixture,G∗, is defined as

G∗ =
Gf −Gm

Gf −Gg

(8.1)

where Gm is the measured impedance value between two electrodes, Gg is impedance

value when the probe section is full of non-conductive gas (vapor) and Gf is impedance

measured when probe section is full with conductive liquid.

For dispersed flow, especially bubbly flow, the electrical field between two elec-

trodes is uniformly distributed in the mixture. Hence the impedance of the mixture

depends only on the conductivity of the mixture. In such a case, the dimensionless

impedance of the two-phase mixture, G∗, can be predicted by Maxwell’s relation [57].

G∗ =
3α

2 + α
(8.2)

Maxwell’s relation is based on the assumption that the non-conductive dispersed
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phase is composed of non-interacting and equal-size spheres, and distributed uni-

formly in the continuous phase liquid, which is consistent with the characteristics of

bubbly flow when the void fraction is low (less than 30%).

For annular flow, void fraction measurement is no more than a film thickness

measurement, if the droplets entrained into the gas phase is neglected. In this case,

ring-type electrodes of the impedance probe exhibit more advantages than other type

of electrodes. Theoretical analysis of of the behavior of a probe with parallel rectan-

gular electrodes separated by a short distance was developed by Coney [58]. Coney

computed the impedance between two rectangular electrodes by the conformal trans-

formation and obtained

Gm = σoLe
K(m)

K(1−m)
(8.3)

where K(m) =

∫ π/2

0

(1−m sin2(x))−1/2dx is the complete elliptic integral of the first

kind, Le is the effective length of electrodes, and

m =
sinh2

(
πW
2δe

)

sinh2
(

π(W+D)
2δe

) (8.4)

where W is the width of the electrodes, D is the distance between electrodes, and δe

is the (equivalent) liquid film thickness.

Andreussi et al. [59] extended the above analysis to the impedance probes with

ring-type electrodes by introducing an equivalent thickness,

δe =
Af

ξw

(8.5)

where ξw is the wetted perimeter, Af is the flow area. For annular flow, the equivalent

thickness is

δe = D
1− α

4
(8.6)

If it can be assumed that the liquid film attached on an electrode has the same

potential as the electrode’s, the dimensionless impedance of the two-phase mixture
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can be approximately expressed as

G∗ = α (8.7)

This implies that, for very thin liquid film, the dimensionless impedance measured

by the impedance void-meter can be related linearly to void fraction.

8.3.2 Thermistor Probe

The inlet temperature is one of the key parameters in instability experiments.

In order to improve the measurement accuracy, a thermistor probe (OMEGA 0N-403-

PP) is installed just above the inlet flange of the test section. The thermistor probe

has interchangeable sensor and its accuracy is around ±0.1◦C. During an experiment,

measured inlet temperature can be obtained from a handheld thermistor thermome-

ter(OMEGA HH42) that is connected to the thermistor probe. The measurement

range for the thermistor thermometer is from -20◦C to +130◦C, and its resolution is

0.01◦C from -20 to 102◦C.

The stainless steel probe is 3.2mm in diameter, and 114mm in length. The

section of the probe immersed in the flow is required to be at least twenty times

longer than the probe diameter, which is 6.4 mm. The flow channel of the test

section is only 19.05 mm in width. Thus, the probe is bent 90◦ and the immersed

length us 76,2 mm as seen in figure 8.4.

8.3.3 Magnetic Flowmeter

HONEYWELL MagneW 300 PLUS magnetic flow meters are setup to measure

volumetric flow rate in the test section and the bypass section. The flow-meter that

measures the main flow through the test section is placed at the preheater outlet.

The other flow meter, which is for bypass flow, is located on the middle of the bypass

flow.

Each magnetic flow meter consists of a detector and a converter combination,

which operates on the principles of Faraday’s Law. The detector receives its power

from the converter in the form of DC square waves to the detector’s excitation coils.
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These coils create a magnetic field at a right angle with respect to the flow direction.

As the conductive liquid flows through this magnetic field, a voltage is produced

across the electrodes, which is proportional to liquid flow velocity. The detector send

this voltage signal to the converter. The converter, which holds the circuitry that

calculates and displays the flow data, converts the detector signal into standard 4-20

mA output for recording and controlling instrumentation.

8.3.4 Differential Pressure Transducer

The measurement of pressure drop across the test section and various parts of

the experimental loop is necessary to quantify the thermal-hydraulic instabilities. For

the purpose, three differential pressure transducers (DP) have been installed. Two

of them are HONEYWELL STD130 type, while the other is HONEYWELL STD120

type. The measurement is done by a piezoresistive sensor, which actually contains

three sensors in one. It contains a differential pressure sensor, a temperature sensor,

and a static pressure sensor. Micro-processor-based electronics provide higher span-

turn-down ratio, improved temperature and pressure compensation, and improved

accuracy. The type STD130 has differential pressure range between 0 to 7 bar. The

other type STD120 has measuring range between 0 to 1 bar. The locations where

differential pressures are measured;

1. Pressure drop across the test section

2. Pump outlet to test section outlet

3. Test section inlet to top of the experimental loop

The exit and inlet losses can be calculated by comparing the measurements from DP

cells.

8.3.5 Absolute Pressure Transducer

One of the important parameters in the instability experiments is the inlet sub-

cooling (∆T = Tsat − Tin), which is used to compute the subcooling number. Along

with the Zuber Number, subcooling number determines the stability of the system
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for given other dimensionless numbers. Therefore, determination of inlet subcooling

via measuring inlet temperature and inlet absolute pressure is highly important.

For the purpose, HONEYWELL ST 3000 Smart Transmitter Series 100e Abso-

lute Pressure Transmitter Type STD140 is used. The working principle is the same

as the working principle of the differential pressure transducer. The range for the

equipment is between 0 and 500 psia.

8.3.6 Thermocouples

In addition to the thermistor at the test section inlet, there are several points

at which temperature is measured with OMEGA K-type thermocouples of model

number KMQSS-062G-6. Temperature is measured at test section inlet, test section

exit, top of the loop, pump inlet, pump outlet (preheater inlet) and preheater outlet.

Temperature measurement at test section inlet and exit are fed to the PC-based data

acquisition system. For the inlet temperature measurement, reading from thermistor

probe are used to quantify the inlet subcooling because of its higher accuracy.

8.4 Data Acquisition System

Data is acquired from the instruments using a personal computer and a data

acquisition system. The computer is a DELL Dimension XPS T800r with 800 MHz

CPU. It has a hard drive with 10 GB capacity for data storage. A CD burner and

an IOMEGA ZIP drive are installed to archive the raw data.

The data acquisition board is a National Instruments AT-MIO-64E3. The board

has a maximum acquisition rate of 500,000 samples per second for a single channel

and 12-bit resolution. The board is configured for 64 single-ended or 32 differential

analog inputs. The board input range is software selectable. The internal DAS board

is connected to a SC-2056 adapter. Most signal-carrying wires are connected to this

adapter.

A 5B01 backplane is attached to the SC-2056 adapter. On this signal condi-

tioning backplane, two 5B37 Thermocouple Input Modules and two 5B39 Current

Output Modules are installed. The 5B37 Thermocouple Input Modules have input
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span limits of ±10 mV to ±0.5 V and ab output range of 0 to +5 V. The accuracy and

nonlinearity of these input modules are ±0.05% of span and ± of span, respectively.

The 5B39-01 Current Output Modules are used to control the heater and the pre-

heater power. These output modules accept a high level signal at its input from the

AT-MIO-64E3 analog output and provide a galvannically isolated 4-20 mA process

current output signal. The 5B39-01 Current Output Modules features high accuracy

of ± 0.05%, ±0.02% of nonlinearity and 1500 Vrms common mode voltage isolation

protection.
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9. EXPERIMENTAL RESULTS

The experimental results for the flow excursion and the DWO are presented in

this chapter. Air-water experiments are performed to calibrate the impedance void-

meter against DP measurements. The characteristic of the flow instabilities observed

in the experimental facility is clarified by the diabatic experiments performed at

different operating points on the subcooling number and the zuber number plane.

9.1 Air-Water Tests

Series of air-water experiments are performed to cross-calibrate the impedance

void-meter with the DP measurements. The dimensionless impedance which is given

by

G∗ =
Gf −Gm

Gf −Gg

(9.1)

where Gf is the impedance measured when the probe is full with water, Gg is the

impedance measured when the probe is full with air, and Gm is the impedance corre-

sponding to the two-phase mixture. As can be seen from the Eq. (9.1), G∗ is direct

indication of the area-averaged void fraction. By increasing the air flow through the

test section, different flow regimes can be observed. The impedance probes can also

be used for the identification of the flow regimes, since probe signal carries the signa-

ture of different flow regimes. Figure 9.1 shows the typical signature of the bubbly,

the cap-bubbly and the slug flow regimes observed in the test section.

The differential pressure transducer (DP-2) located to measure the pressure

differential across the test section can also be used to measure the the volume-averaged

void fraction. The void fraction can be computed from the DP measurement by
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Figure 9.1. Typical Impedance Signal for Different Flow Regimes
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Figure 9.2. Cross-Calibration Curve for the Void Measurement with the
DP Cell and the Impedance Probe

assuming the gravitational pressure drop is the dominant pressure drop component;

α =
∆Ptest

ρfgltest
(9.2)

where ltest is the distance between two pressure taps, ρf is the liquid density inside

the DP line, and g is the gravitational acceleration. Figure 9.2 shows the cross-

calibration curve between void fraction measured by DP cell and the dimensionless

impedance for each of the impedance probe located along the test section. Imp1

denotes the impedance probe at the lowest location, Imp2 denotes impedance probe

at the middle of the test section, and Imp3 denotes the probe at the top of the test

section.
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It can be seen from Figure 9.2 that the dimensionless impedance G∗ gives similar

void fraction compared to the one measured by the test section pressure drop up to

% 15 of void fraction. However, beyond that point, the discrepancy between two

measurement methods increases. The reason is that accelerational and frictional

effects in the DP measurement increase with void fraction. This basically results

in underestimation of the void fraction. In the analysis of the experimental results,

the dimensionless impedance is used as area-averaged void fraction measured at each

axial location on the test section.

9.2 Flow Instability Tests

Series of experiments are performed for the different operational conditions in

the test facility described in Chapter 8. The following measurements are taken for

different tests conditions:

1. Impedance at Three Axial Locations (Imp1, Imp2, Imp3)

2. Absolute Pressure at the Test Section Inlet (Pcell)

3. Differential Pressure across Different Section of the Facility (DP-1, DP-2, DP-3)

4. Volumetric Flow in the Test Section and the Bypass Section (Mag-1, Mag-2)

5. Test Section Inlet and Exit Temperature (Tinlet, Texit)

6. Test Section Heater (MHeater)

7. Preheater (Heater)

The name inside the parenthesis denotes the name tag assigned for each of the in-

strument.

9.2.1 Experimental Procedure

An experimental procure guide is prepared for the general guideline to be fol-

lowed during the experiment. Before starting the experiment, impedance circuit and

DC power supply are turned on one-hour prior taking data. This is necessary to

9-4



Test No: Tin (◦C) υi (m/s) Q (kW) Nsub NZu

1 93 1.2 40 42.1 18.9
2 82 0.8 35 62.1 28.2
3 85.5 0.85 35 54.8 26.5
4 88 0.95 35 49.6 23.3
5 89 0.97 35 48.3 22.4
6 81 0.65 30 64.6 30.7
7 84.5 0.7 30 57 27.5
8 88 0.85 30 50.6 22.1
9 91.5 1.05 30 43.5 17.9

Table 9.1. Test Conditions for the Flow Excursion

overcome the effect of electronic drift exists in the circuitry. Bypass flow is adjusted

by using the valve located on the bypass channel to control the fraction of bypass

flow in the test facility. The bypass flow is kept much larger ( 3 times ) than the test

section flow in order to ensure that most of the flow goes through the bypass sec-

tion to maintain constant pressure drop boundary condition across the test section.

Preheater is used to initial heat-up of the facility from the cold conditions. After

reaching the predetermined test section inlet temperature, the test section power is

gradually increased. At the same time, the cooling flow rate is adjusted to keep the

inlet temperature constant. For given test section power, inlet velocity and inlet tem-

perature, steady-state conditions are maintained. From the analytical study given in

Chapter 6 , it has been shown that decrease in the channel inlet velocity is always

stabilizing as can be seen from the maps generated on the subcooling number and

the zuber number. Therefore, one way to destabilize the system is to gradually de-

crease the flow velocity via adjusting the pump rotation frequency. Before decreasing

the velocity at fixed heater power and inlet temperature, data acquisition system is

triggered to take the data for five minuted. The data acquisition frequency is set to

200 Hz.

Table 9.1 summarizes the flow conditions where the flow excursion is observed.

The data is plotted on subcooling number and zuber number plane with analyti-

cal model prediction for the stability boundary. Figure 9.3 shows the comparison
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Figure 9.3. Comparison of the Experimental Data and the Model Predic-
tion

between the data and the prediction obtained by solving the dimensionless character-

istic equation for the flow excursion. The experimental data also shows that subcooled

boiling is major destabilizing effect in two-phase flows as prediced by the analytical

model. Therefore, neglecting subcooled boiling non-conservative results in terms of

the flow excursion boundary. The discrepency between the data and the model can

be explained as follows;

i. The characteristic equation derived for the flow excursion in Chapter 6 describes

the problem as finding the solution where
∂∆P

∂υi

= 0. This equation gives a region

inside which pressure drop vs. flow rate curve has negative slope with two lines.

Therefore, the first boundary represents the conditions where
∂∆P

∂υi

= 0. This

point can be crossed by changing the heat flux which moves the curve up and
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down. However, the channel inlet velocity is decreased gradually until it reaches

the flow excursion conditions in the experiments. As referring to Figure 9.4, the

flow excursion occurs at point B where the velocity is smaller than the velocity at

point A which is predicted by the model. Therefore, the experimental conditions

at which the excursion begins correspond to the higher zuber number.

ii. The other factor that may cause the discrepency is the validity of the subcooled

boiling at low pressure conditions. The experiments performed for subcooled

boiling at low pressures indicate that the Saha-Zuber model underestimates the
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Figure 9.5. Transient in the Channel Inlet Velocity during the Flow Ex-
cursion

departure enthalpy at low pressures. In other words, the void-departure starts at

lower value of liquid enthalpy than the one predicted by the Saha-Zuber model.

Figure 9.5 shows the typical flow transient during the flow excursion (test no:2).

Once the flow excursion boundary reached, there is rapid decrease in the flow. This

is the reason that the velocity which is shown with an arrow in the figure is statically

unstable. Small decrease in the flow further decelerates the flow until it reaches

another stable steady-state solution which corresponds to the high quality two-phase

region (point C in Figure 9.4.
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Figure 9.6. Transient in the Channel Void Fraction during the Flow Ex-
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Figure 9.6 demonstrates how the void fraction in the channel increases in the

channel following the flow excursion. The data shown in the figure corresponds to

the dimensionless impedance which can be interpreted as void fraction. Following the

excursion, the channel rapidly becomes vapor. In the tests, tests have been terminated

at this point. Since high quality conditions may easily reaches the CHF conditions.

The flow excursion induced CHF is very important CHF mechanism under natural

circulation conditions at low-pressures [7].

However, the flow excursion does not need to yield stable solution at high quality

two-phase flow. Especially, at low subcooling, the oscillatory flow might occur due
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Figure 9.7. Constant Amplitude Oscillations following the Flow Excursion

to interaction between the flow excursion and DWO. For instance, at test no:9, the

oscillatory flow occurs in the channel following the flow excursion. Figure 9.7 shows

the constant amplitude oscillations following the flow excursion. In this case, CHF is

not as certain as in the case shown in Figure 9.5.
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Test No: Tin (◦C) Q (kW)
10 95 30
11 95 25
12 94.5 27.5
13 96 32.5
14 98 20
15 99 20
16 100 30
17 100 32.5
18 100 35
19 99.5 37.5
20 100 40

Table 9.2. Test Conditions for Flow Oscillations at High Inlet Tempera-
ture

Experimental observations demonstrated that the pure flow excursion occurs

when the inlet subcooling is high. Series of experiments have been performed at rel-

atively high inlet temperatures where large amplitude, low frequency oscillations are

observed. Table 9.2 summarizes the tests conditions in terms of the inlet temperature,

and the main heater power.

Figure 9.8 shows the oscillations observed at test no:14. It clearly shows that

the channel inlet velocity has phase-shift around 180◦ respect to the channel exit

void fraction. The phase-shift is an indication of the void propagation through the

channel. In other words, any disturbance occurs at the channel inlet propagates

with the kinematic wave velocity which is close to the vapor velocity and induces

disturbance in the two-phase mixture region. Since this process is associated with

certain time-lag due to the void-wave propagation, phase-shift occurs between the

inlet velocity and the exit void fraction (or two-phase pressure drop). As explained

in Chapter 2, when the phase-shift becomes 180◦, self-sustained flow oscillations are

observed.

Figure 9.9 clearly shows that as the heater power is increased, the oscillations’

amplitude becomes larger. However, oscillation frequency is almost same for the test

no: 16, 17, 18 and 20.
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9.3 Void-Reactivity Feedback Simulation

The implementation of the void-reactivity feedback simulation via heater power

control program written in LabView is described in this chapter. The simulation

considers the time rate of change in the heater power predicted by the point kinetic

model and the artificial time delay predicted by the single lumped model derived in

Chapter 4. This insures that the actual heat flux to the coolant is well simulated in

the electric heater rod such that the overall impact of the nuclear-coupled thermal-

hydraulic instabilities can be accurately assessed experimentally.

Figure 9.10 demonstrates the data flow in the facility when simulating the

nuclear-coupled instabilities. The instantenous area-averaged void fraction is mea-

sured at three different axial locations along the test section. Along with the other

instruments, the impedance circuit outputs are connected to SC-2056 adapter, which

feeds the data into the data acquisition computer. The AI-MIO-64E3 DAQ card

converts the analog input to the digital format that can be processed via the power

control program written in LabView.

Point kinetic equations given by Eqs. (5.5a) and (5.5b) can be solved numerically

by introducing the first order implicit Euler method. In this method, time derivatives

are approximated as
dn

dt
≈ ni+1 − ni

∆t
, (9.3)

where ∆t is the time step size and i is the time index starting from 0. Implicit

methods are favorable since the method is always stable irrespective of the time-step

size. However, if the time step size is too large, then the accuracy of the solution

is reduced. By means of the implicit Euler method, explicit expressions for new

time step values for the neutron amplitude and the precursor concentration can be

determined as

ni+1 =

λ

Λ
ξie

−λ∆t + ni

[
1

∆t
+ λβ∆t

2Λ
e−λ∆t

]

1

∆t
−

ρi − β

Λ
−

λβ∆t

2Λ

(9.4a)
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ξi+1 = ξie
−λ∆t +

β∆t

2

[
ni+1 + nie

−λ∆t

]
(9.4b)

The scheme is started with n0 = 1 and ξ0 = β
λ
, then Eq. (9.4a) is solved first.

With calculated ni+1, Eq. (9.4b) is used to update the value for ξi+1. The current

time is t = i∆t.

The void-reactivity feedback at time step i is written as follows:

ρi = ∆ρα(〈α〉z(ti), 〈αo〉z) (9.5)

where 〈α〉z represents the axially averaged void fraction from the area- and time-

averaged void fraction. The time averaging is performed via moving averaging to

remove the high frequency noise in the void signal. The axial averaging is simply

the arithmetic mean of the three void fraction values. The void-reactivity given in

Eq. (9.5) is calculated by evaluating the integral in Eq. (5.12).
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10. CONCLUSIONS

In view of the importance of the nuclear-coupled flow/power instabilities in both

conventional and next generation natural circulation BWR system, a detailed ana-

lytical modeling study has been carried out to derive the dimensionless groups. The

physical processes namely, the fluid flow, fuel heat conduction, and neutron kinetics

have been examined in a general two-phase flow systems such that the developed

model can be applied to both forced and natural circulation systems.

The flow field formulation based on the one-dimensional drift-flux model has

been performed by Ishii [12]. In the present study, the problem formulation given by

Ishii has been extended by considering the subcooled boiling via Saha-Zuber [1]. The

dimensionless groups that are important for the static and dynamics of the flow are

rephrased in this study considering the time-dependent wall heat flux response.

The fuel heat conduction process has been examined for a typical BWR fuel

pin consisting of the pellet, gap, and cladding regions. The detailed problem formu-

lation has been performed and a simplified model based on dimensionless numbers

are derived. It has been shown that the Fourier number defined by Eq. (4.58) is the

most important dimensionless number. The Fourier number is the ratio of the heat

transferred and the heat stored. Therefore, it demonstrated the measure of the time-

lag due to diffusion of the heat throughout the fuel element. The artificial time-lag

that is required to simulate the wall heat flux of a BWR fuel pin in the experimental

facility can be determined based on the Fourier number scaling.

The model derived in Chapter 3 has been applied to flow excursion phenomenon

in both forced and natural circulation system. It has been concluded that the sub-

cooled boiling is a destabilizing effect. Neglecting the subcooled boiling gives non-

conservative results in terms of the stability boundary.
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A simple nonlinear dynamics model has been derived for the nuclear-coupled

flow/power instabilities for the flow systems described in Chapter 3. The field equa-

tions for the fluid flow, fuel heat conduction, and neutron kinetics have been trans-

formed into a set of coupled nonlinear ODEs by means of Galarkin Weighted Residual

Method. The problem formulation has been kept general such that any degree of poly-

nomial can be used to simulate the enthalpy wave propagation in the single phase

heated section and void wave propagation in the two-phase mixture heated and un-

heated sections of a flow loop. A sample calculation for a single channel BWR core

has demonstrated that limit-cycle oscillations are observed in the unstable region

which is predicted via linear frequency domain tools. The model developed in this

study can be used to understand the physics of the nonlinear DWO with or without

nuclear feedbacks. Therefore, a detailed parametric study can be performed to in-

vestigate the effect of the void-reactivity coefficient, fuel heat conduction parameters

such as flux depression factor, inlet subcooling, operating pressure/power, localized

flow resistances etc.

Based on the detailed scaling study for each process (fluid flow, heat conduc-

tion, neutron kinetics), a strategy has been developed to simulate the void-reactivity

feedback in the experimental facility introduced in Chapter 8. The nuclear-coupled

flow instability experiments are still on-going. The detailed database considering the

important parameters described in each process are being generated.
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[2] J.A.Bouré, A.E. Bergles, and L.S. Tong. Review of two-phase flow instabilities.
Nucl. Eng. Des., 25:165–192, 1973.

[3] L.S. Tong and Y.S. Tang. Boiling Heat Transfer and Two-Phase Flow. Taylor
& Francis, 1997.

[4] R.T. Lahey Jr. and D.A. Drew. An assessment of literature related to LWR
instability modes. Technical report, Nuclear Regulatory Commission, 1980.

[5] M. Ledinegg. Instability of flow during natural and forced circulation. Die
Warme, 61(8), 1938.

[6] J.S. Maulbetsch and P. Griffith. A study of system induced instabilities in forced
convection flows with subcooled boiling. Technical Report 5382-35, M.I.T. En-
gineering Projects Lab Report, 1965.

[7] M. Ishii and H.K. Fauske. Boiling and dryout behavior in a liquid-metal fast
breeder reactor subassembly bundle under low heat flux and low flow conditions.
Nucl. Sci. Eng., 84:131–146, 1983.

[8] R.P. Mathisen. Out of pile channel instability in the loop Skalv. In Symp. on
Two Phase Dynamics, Eindhoven, Netherlands, 1967.

[9] F.A. Jeglic and T.M. Grace. Onset of flow oscillations in forced flow sub-
ccoled boiling. Technical report, NASA-TN-D 2821, NASA Lewis Research
Cntr.,Cleveland,OH, 1965.

[10] M. Aritomi, T. Nakahasi, M. Wataru, J.H. Chiang, and M. Mori. Transient
behavior of natural circulation for boiling two-phase flow experimental results.
In Trans. of the American Nuclear Society, volume 62, pages 709–711, 1990.

[11] M. Aritomi, J.H. Chiang, and M. Mori. Fundemental studies on safety-related
thermal-hydraulics of natural circulation boiling parallel channel flow systems
under startup conditions. Nucl. Safety, 33:170–172, 1992.

[12] M. Ishii. Flow Instabilities in Two-Phase Mixtures in Thermal Equilibrium. PhD
thesis, Georgia Institute of Technology, 1970.

[13] M. Ishii. Study on flow instabilities in two-phase mixtures. Technical Report
ANL-76-23, Argonne National Laboratory, 1976.

11-1



[14] R.T. Lahey Jr. and F.J. Moody. The Thermal Hydraulics of a Boiling Water
Nuclear Reactor. American Nuclear Society, second edition, 1993.

[15] R.T. Lahey Jr. and M.Z. Podowski. Multiphase Science and Technology, vol-
ume 4, chapter On the Analysis of Various Instabilities in Two-Phase Flows.
Hemisphere Publishing Corporation, 1989.

[16] A.E. Bergles, P. Goldberg, and J.S. Maulbetsch. Acoustic oscillations in a high
pressure single channel boiling systems. In Proc. Symp. on Two-Phase Flow
Dynamics, volume 6, pages 525–550. EURATOM Rep., 1967.

[17] A.A. Bishop , R.O. Sandberg, and L.S. Tong. Forced convection heat transfer to
water at near critical temperature and supercritical pressure. Technical Report
WCAP-2056, USAEC, 1965.

[18] A.H. Stenning and T.N. Veziroglu. Oscillations in two-component, two-phase
flow. Technical Report CR-72121, NASA, 1967.

[19] State of the art report on boiling water reactor stability. Technical Report
NEA/CSNI/R(96)21, OECD/NEA, 1997.

[20] J. M. Leuba and J. M. Rey. Coupled thermal-hydraulic and neutronic instabil-
ities in boiling water reactors: A review of state of the art. Nucl. Eng. Des.,
145:97–111, 1993.

[21] R.T. Lahey Jr. and G. Yadigaroglu. NUFREQ, a computer code to investi-
gate thermo-hydraulic stability. Technical Report NEDO-13344, General Electric
Company, 1973.

[22] G.C. Park, M.Z. Podowski, M. Becker, and R.T. Lahey Jr. The development of
closed form analytical model for the stability analysis of nuclear coupled density
wave oscillations in boiling water reactors. Nucl. Eng. Des., 92:253–281, 1986.

[23] O. Yokomizo. Time Domain Analysis of BWR Core Stability. J. Nucl. Sci.
Technol., 99:41–51, 1987.

[24] J.H. Chiang, M. Aritomi, R. Inoue, M. Mori and H. Tabata. Thermal-hydraulics
during startup in natural circulation boiling water reactor. In Proc. 5th Int.
Topical Meeting on Reactor Thermal Hydraulics(NURETH-5), pages 119–126,
1992.

[25] F. Inada, M. Fruya, and A. Yasuo. Thermohydraulic instability of boiling natural
circulation loop induced by flashing (analytical consideration). Nucl. Eng. Des.,
200:187–199, 2000.

[26] S.Y. Lee, M. Ishii. Thermally Induced Flow Oscillation in Vertical Two-phase
Natural Circulation Loop. Nucl. Eng. Des., 122:119–132, 1990.

[27] I. Babelli. Flow Instabilities under Low-Pressure and Low-Flow Conditions with
Application to the Simplified Boiling Water Reactor. PhD thesis, Purdue Uni-
versity, 1996.

[28] J. Paniagua, U.S. Rohatgi, V. Prasad. Modeling of thermal hydraulic instabilities
in single heated channel loop during startup transients. Nucl. Eng. Des., 193:207–
226, 1999.

11-2



[29] P. Saha and N. Zuber. Point of net vapor generation and vapor void fraction in
subcooled boiling. In Proceedings 5th International Heat Transfer Conference,
pages 175–179, Tokyo, 1974.

[30] Levy, S. Forced convection subcooled boiling–prediction of vapor volumetric
fraction. Int.J. Heat Mass Transfer, 10, 1967.

[31] N. Zuber. Flow excursion and oscillations in boiling, two-phase flow systems
with heat addition. In Proc. Symp. Two-Phase Flow Dynamics, volume 1, page
1071, 1967.

[32] M. Ishii. Thermo-fluid Dynamic Theory of Two-Phase Flow. Eyrolls, Paris,
Scientific and Medical Publication of France, 1975.

[33] M. Ishii. One dimensional drift flux model and constitutive equations for relative
motion between phases in various two-phase flow regimes. Technical Report
ANL-77-47, Argonne National Laboratory, 1977.

[34] S. Levy. Forced convection subcooled boiling–prediction of vapor volumetric
fraction. Technical Report GEAP-5157, General Electric Company, 1966.

[35] R.W. Bowring. Physical model based on bubble detachment and calculation of
steam voidage in the subcooled boiling region of a heated channel. Technical
Report Report HPR-10, OECD Halden Reactor Project, 1962.

[36] P. Griffith , J.A. Clark, and W.M. Rohsenow. Void volumes in subcooled boiling
systems. In paper-58-HT-19. American Society of Mechanical Engineers, 1958.

[37] M.F. Lyons, D.H. Coplin, H. Hausner, B. Weidenbaum, and T.J. Pashos. UO2
Powder and Pellet Thermal Conductivity during Irradiation. Technical Report
GEAP-5001-1, General Electric Company, 1966.

[38] N. Todreas, M.S. Kazimi. Nuclear Systems I, Thermal Hydraulic Fundementals.
Taylor and Francis, 1990.

[39] L.S. Tong and J. Weisman. Thermal Analysis of Pressurized Water Reactors.
American Nuclear Society, 1970.

[40] A.M. Ross and R.L. Stoute. Heat Transfer Coefficient Between UO2 and Zircaloy-
2. Technical Report AECL-1152, Atomic Energy of Canada Limited, 1962.

[41] R.T. Lahey, Jr. and F.J. Moody. The Thermal Hydraulics of a Boiling Water
Nuclear Reactor. American Nuclear Society, second edition, 1993.

[42] D.B. Scott. Physical and Mechanical Properties of Zircaloy-2 and Zircaloy-4.
Technical Report WCAP-3269-41, Westinghouse Electric Company, 1965.

[43] F.W. Dittus and L.M.K. Boelter. Publications on Engineering, volume 2. Uni-
versity of California, Berkeley, 1930.

[44] W.H. Jens and P.A. Lottes. Analysis of Heat Transfer, Burnout, Pressure Drop
and Density Data for High Pressure Water. Technical Report ANL-4627, Ar-
gonne National Laboratory, 1951.

11-3



[45] J.R.S. Thom et.al. Boiling in Subcooled Water during Flow in Tubes and Annuli.
In Proc. Inst. Mech. Eng., page 180:226, 1966.

[46] M. Ishii, S.T. Revankar, Y. Xu, H.J. Yoon, S. Kuran, L. Cheng, X. Sun, M.
Lindsey, W. Wang. Thermal-Hydraulic Instability Study for Natural Circulation
BWRs in PUMA Facility. Technical Report PU/NE-02-09(Quick-Look-Report),
U.S. Nuclear Reagulatory Commission, September 2002.

[47] F.D. Giust, R.J. Stamm’ler, A. A. Ferri. HELIOS 1.7 User Guide and Manual.
Studsvik Scandpower, 2001.

[48] K. Ott and R.J. Neuhold. Introductory Nuclear Reactor Dynamics. American
Nuclear Society, La Grange Park, Illinois, USA, 1985.

[49] J.J. Duderstadt and L.J. Hamilton. Nuclear Reactor Analysis. John Wiley, New
York, 1976.

[50] J. M. Leuba. Radial nodalization effects on BWR stability calculations. In In-
ternational Workshop in Boiling Water Reactor Stability, pages 232–240. OECD
Nuclear Energy Agency, October 1990.

[51] G.F. Hewitt. Measurement of Two-Phase Flow Parameters. Acadamic Press,
New York, 1978.

[52] S.T. Revankar and M.Ishii. Local interfacial area measurement in bubbly flow.
Int. J. Heat and Mass Transfer, 87:453–468, 1992.

[53] N. Miller and R.E.Mitchie. Measurement of local voidage in liquid/gas two-phase
flow systems using a universal probe. J.Br. Nucl. Energy Soc., 9:94–100, 1970.

[54] A.M.C. Chan and S. Banerjee. Design aspects of gamma densitometers for void
fraction measurements in small scale two-phase flow. Nucl. Instr. Meth., 190:135–
148, 1981.

[55] C.S. Eberle, W.H. Leung, M.Ishii and S.T. Revankar. Optimization of a one-
shot gamma densitometer for measuring area-averaged void fractions of gas-liquid
flows in narrow pipelines. Meas. Sci. Technol., 5:1146–1158, 1994.

[56] D.R. Oliver and A. Young Hoon. Two-phase non-newtonian flow. part-1: Pres-
sure drop and hold-up. Trans. Instn. Chem. Engrs., 46:106–115, 1968.

[57] J.C. Maxwell. A Treatise on Electricity and Magnetism. Clarendon Press, Ox-
ford, 1881.

[58] M.W.E. Coney. The theory and application of conductance probes for the mea-
surement of liquid film thickness in two-phase flow. J. Phys. E. Scient. Instrum.,
6:903–910, 1973.

[59] P. Andreussi, A. Di Donfrancesco, M. Messia. An impedance method for the
measurement of liquid hold-up in two-phase flow. Int. J. Multiphase Flow, 6:777–
787, 1988.

11-4



APPENDIX A. SINGLE AND TWO-PHASE EULER NUMBERS

Integration of momentum equation based on steady-state solution for density and

velocity field yields euler number, which is the ratio of pressure and inertial forces.

1. Single Phase Heated Region:

N1φ
Eu,h =

[
1

2
Ki + λ∗

(
Nf +

1

NFr

)]
(A.1)

2. Two-Phase Mixture Heated Region:

N2φ
Eu,h =

Ke

2

CoC
∗
r

1 + C∗
r (Co − 1)

+
1

N2
Zu

C∗
r − 1

1 + (Co − 1)C∗
r

(A.2)

+
1

NFr

[
Co − 1

Co

(1− λ∗) +
Co + Nd

NZuC2
oCg

ln(C∗
r )

]

+ CmNf
1

NZu
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Cg(Co − 1)

[
(C∗

r − 1)− 1

Co − 1
ln

(1 + C∗
r (Co − 1)

Co

)]

+ N2
Zu

NρCoC
∗
r (C∗

r − 1)[
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r (Co − 1)
]2 υ∗2gj,e

where

υ∗gj,e =
Nd

NZu

+
Co − 1

NZu

[
1 +

C∗
r − 1

Co

(Co + Nd)

]
(A.3)

3. Two-Phase Mixture Unheated Section: The euler number for unheated section

or chimney section

N2φ
Eu,uh = l∗uh

[
1 + C∗

r (Co − 1)

CoC∗
r

N−1
Fr +

CmNf,uh

D∗
e,uh
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(A.4)
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The boiling boundary at steady-state conditions is written in dimensionless form

by means of Saha-Zuber model,

λ∗ =
Nsub

NZu

−





0.0022
D∗

e

ξ∗h

1

a∗f

1

NZu

NPe < 70000

154
1

A∗
h

NPe > 70000

(A.5)

Parameter C∗
r is the ratio of kinematic wave velocity at the heated section exit

and boiling boundary, which is given by

C∗
r = 1 +

NZuCoCg

Co + Nd

(1− λ∗) (A.6)

which is always greater than 1 if boiling starts in heated section.
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APPENDIX B. BOILING BOUNDARY DYNAMICS EQUATIONS

Inserting Eq. (7.7) in to the single phase energy equation, the following equation for

the residual can be obtained:

H1φNs + 1 =
dNsin

dt
+

N1∑
i=1

dNsi

z

i

+ υfin(t)
N1∑
i=1

dNsi

i
zi−1 + Ω1φ (B.1)

The wighted functions are given as 1, z, . . . zN1−1. Therefore, N1 equations can be

determined by evaluating the integral Eq. (7.5) over [0, λ(t)]. In general, M th equation

can be written as follows:

N1∑
i=1

λ(t)i+M

i + M

dNsi

dt
= −dNsin

dt

λ(t)M

M
− υfin(t)

N1∑
i=1

i

i + M − 1
λ(t)i+M−1Nsi(t)− λ(t)M

M

(B.2)

By using the boundary condition at z = λ(t),

Nsin(t) +
N1∑
i=1

Nsi(t)λ(t)i = 0 (B.3)

The differentiation of Eq. (B.3) respect to time gives the equation for the boiling

boundary given by Eq. (7.10). Equation 7.10 together with the system of equation

defined via Eq. (7.8) is solved to determine the boiling boundary dynamics and the

single phase liquid enthalpy wave propagation.
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APPENDIX C. PRESSURE DROP COMPONENTS

The integrating the second term on RHS of Eq. (3.56)) gives the pressure drop due

to the convective acceleration. The integration can be modified via using the mixture

continuity equation (Eq. (3.37)) as follows:

∫ θ1

0

ρmυm
∂υm

∂z
dθ = ρmυ2

m

∣∣∣
θ1

0
+

∫ θ1

0

υm
∂ρm

∂t
dθ (C.1)

Therefore, the pressure drop due to convective acceleration, ∆Psa(t) is given as,

∆Psa(t) =

(
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N2∑
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ρmi(t)θ
i
1

)
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i + 1
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)

The total frictional pressure drop in the channel is given as follows:

∆Pfr(t) = Nf

[
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)

The gravitational pressure drop can be simply obtained via the integration of
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the density along the channel. It is given as,

∆Pgr =
N−1

Fr

N2
Zu

(
1 +

N2∑
i=1

βi+1
1

i + 1
ρmi(t) + ρme(t)luh +
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uh

i + 1
ρm,uhi(t)

)
(C.4)

Finally, the pressure loss due to localized flow resistances, Kk, along the channel

at locations, zk, is given by the following equation,

∆Pform =
∑

k∈1φ

1

2
Kkυ

2
fin(t) +

∑

k∈2φ

1

2
Kk

(
1 +
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i
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2 (C.5)

where θk = zk − λ(t).
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